
Gemini: Bidirectional Generation and Analysis of Games via ASP

Adam Summerville1 Chris Martens2 Ben Samuel3 Joseph Osborn4

Noah Wardrip-Fruin5 Michael Mateas5

California State Polytechnic University, Pomona1 North Carolina State University2 University of New Orleans3

Pomona College4 University of California, Santa Cruz5

asummerville@cpp.edu martens@csc.ncsu.edu bsamuel@cs.uno.edu joseph.osborn@pomona.edu
nwf@ucsc.edu mmateas@ucsc.edu

Abstract

Current approaches to game generation don’t understand the
games they generate. As a result, even the most sophisti-
cated systems in this regard, e.g., Game-o-Matic, betray this
problem—generating games with goals that are at odds with
their mechanics. We describe Gemini, the first bidirectional
game generation and analysis system. Gemini is able to take
games as input, perform a proceduralist reading of them, and
produce possible interpretations that the games might afford.
By utilizing the declarative nature of Answer Set Program-
ming (ASP), this analysis pathway opens up generation of
games targeting specific interpretations and makes it possible
to ensure the generated games are consistent with the desired
reading. For Gemini, we developed a game specification lan-
guage capable of expressing a larger domain of games than
is possible with VGDL, the most widespread representation.
We demonstrate the generality of our approach by generating
games in a series of domains. These domains are based on
prototypes hand-created by a team without knowledge of the
constraints and capabilities of Gemini.

Introduction
Procedural Content Generation (PCG) has been a part of
games since 1978 (Worth 1978), but has mostly focused on
generating pieces of games: textures, props, levels. However,
there has been a push over the last decade toward generat-
ing entire games (Nelson and Mateas 2007; Togelius and
Schmidhuber 2008; Treanor et al. 2012; Nielsen et al. 2015;
Cook, Colton, and Gow 2017a). Many of these approaches
generate games intended to have a specific interpretation,
but this interpretation is by fiat; the generators march for-
ward and say they achieved their interpretation but have no
way of analyzing the generated game to ensure this.

To illustrate this idea, we look to the closest prior work
in generating games with meaning, Game-o-Matic by Tre-
anor et. al. Game-o-Matic accepts a desired meaning that a
generated game is supposed to express (meanings are ex-
pressed as concept diagrams), and generates simple games
whose mechanics are supposed to express that meaning. In
Treanor’s dissertation (Treanor 2013), he discusses an exam-
ple of a game meant to match the dynamics of the Occupy
Wall Street movement. While Game-o-Matic is capable of

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

producing sensible games (e.g., as Treanor (Treanor 2013)
relates, “As the occupy movement grows to fill the screen,
overwhelming the police forces, removing Wall Street hap-
pens without any actions from the player”), it is also capable
of producing nonsensical games (e.g., the goal is to have the
player, as the police, push occupiers to Wall Street—which
causes the occupiers to grow). By operating in a pipelined
manner in a single direction from desired meaning to gen-
erated game mechanics, Game-o-Matic is incapable of rea-
soning fully about meanings expressed by generated games,
leading to such problems. A system operating in this forward
manner would need to codify all possible combinations of
choices, feasible in only the narrowest of toy domains, due
to the combinatorial nature of these choices.

In this paper we present Gemini, the first bidirectional
game analysis and generation system, capable of provid-
ing interpretations of existing games and generating games
to meet a specific interpretation. Gemini uses Answer Set
Programming (ASP), a declarative programming paradigm
which enables the bidirectionality
• Analysis Path: Game→ { Interpretation }
• Generation Path: Interpretation→ { Game }
with the same code enabling both paths. Earlier approaches
only generated games with entity-to-entity interpretations
(Nelson and Mateas 2007; Treanor et al. 2012) (e.g., A at-
tacks B), while Gemini is capable of providing interpreta-
tions about arbitrary numbers of entities, and about the game
as a whole. Furthermore, the earlier approaches had no abil-
ity to ensure self-consistency, in that they would choose me-
chanics for pairwise entity relationships, but could not rea-
son about the complex interactions between mechanics.

We note that while basic game generation is an interest-
ing and complex problem in its own right, because Gem-
ini can target the domain of generative “message games” its
approach could also enable new kinds of interactive experi-
ences. For example, earlier work has noted the possibilities
of procedural narrative and game generation for pedagogical
purposes (Samuel et al. 2017), where the experience can tai-
lor itself to the interactions of the player. Gemini is currently
being used to prototype such an experience, and this is the
context in which the example games below were developed.

Gemini represents a novel contribution in 3 ways (1) it
is the first generator to be able to target interpretations of
games larger than entity-to-entity relationships, (2) it is the



first game analysis system, (3) it is the first generator to use
an analysis system to ensure consistency between the target
interpretation and generated game.

Related Work
Generation of games and mechanics broadly fall under top-
down or bottom-up approaches which our approach bridges.
Earlier top-down approaches have enumerated a finite set
of mechanics and then select those subject to constraints,
perhaps looking to optimize some criterion. Variations For-
ever (Smith and Mateas 2010) was an early ASP based game
generator that was able to generate games by using a fixed
pool of mechanics (e.g., the red square will have movement
like Pac-Man), but had very minimal constraints and mostly
used ASP as a means of generating combinatorial sets. Like
Gemini, Game-O-Matic (Treanor et al. 2012) is a system de-
signed to generate games that support a reading defined by a
user. However, Game-O-Matic only supports specifications
of relationships between entities (e.g., dogs attack cats), and
each relationship type is mapped to a finite pool of game me-
chanics (e.g., A attacks B could be represented by A shoot-
ing projectiles at B).

The most notable bottom-up approach is Mechanics
Miner (Cook et al. 2013) which used reflection to allow
the generator to determine the code-level parameters avail-
able to it and then generate mechanics by modifying entity
properties using a set of atomic operations (e.g., modify a
scalar by doubling or halving it). Mechanics Miner then used
evolution to generate mechanics subject to playability con-
straints, rewarding mechanics that the player uses more than
preset mechanics. Mechanic Miner has no notion about the
real-world semantics of its mechanics, leading to mechanics
that are awkward for humans to interpret (e.g., a mechanic
that doubles the player’s x-position has no real-world ana-
logue). Furthermore, while Mechanic Miner prefers games
that utilize generated mechanics, it always has its preset
“platformer” mechanics to fall back upon.

Like Gemini, there are approaches that straddle the
bottom-up/top-down distinction. Nielsen et al. (Nielsen et
al. 2015) used evolutionary computation to generate games,
either generated from scratch or mutated from human-
authored games, with the goal of maximizing the distance
between a “good” player (an MCTS approach) with a “bad”
player (a player that does nothing). They used VGDL for
their approach, which has some pre-specified mechanics
(e.g., there are a finite number of movement models), but
allows for some bottom-up creation (e.g., results of entity
interaction). While interesting, their approach suffered from
issues such as generating games that did not make use of
player input, or games with nearly equal performance be-
tween the “best” player and a random player.

The closest work to ours is an ASP approach by Zook
and Riedl (Zook and Riedl 2014) that generated mechanics
from a finite pool of atomic actions (e.g., move the player
n spaces to the right) such that certain constraints are met
(e.g., the player can reach the exit of the level while staying
alive). While their work is capable of generating evocative
mechanics such as the player riding on the back of an enemy,
these semantics are not reasoned about by their approach

and only come from post-hoc human analysis. Another key
difference between their approach and ours is that they are
only able to generate mechanics that fit into a specific goal
and rule scaffold, while Gemini generates those rules and
goals. The largest distinction, however, is that Gemini pro-
duces playable games, instead of rules for a hypothetical
game.

ANGELINA 3 and 4 (Cook, Colton, and Gow 2017b) also
generate games that attempt to evoke specific affectual re-
sponses or have specific meanings. ANGELINA 3 uses a
fixed set of mechanics (Mario style platformer running and
jumping) but generates games with specific theming (e.g.,
using images of Barack Obama and Hamid Karzai for a
game about the war in Afghanistan) meant to offer com-
mentary on a news article that ANGELINA 3 itself selects
from a newspaper. ANGELINA 4 moves away from political
commentary and instead accepts free text input to generate
a game informed by a theme. Like version 3 it uses a fixed
set of mechanics (e.g., first person navigation) and uses as-
sets curated from online sources to match a specific theme.
While ANGELINA 4 makes games that it believes match a
specific meaning, those interpretations often rely on inhu-
man leaps of logic that make the games unreadable to hu-
mans (e.g., given One as a theme it decided to make a game
about a Founder where it used a Ship prop since Ships can
Founder).

Earlier work by Martens et al. (Martens et al. 2016)
looked at the game analysis problem in what they called
a “reverse Game-o-Matic.” This work performed a proce-
duralist reading (Treanor et al. 2011) of The Free Culture
Game, an indie game about consumption and creation. They
demonstrated a system capable of producing readings that
were consistent with those of games scholars. However, their
work did not tackle the game generation problem, and in-
stead focused on analyzing previously authored games.

Gemini Methodology
We will now discuss Gemini—first Cygnus, the Domain
Specific Language (DSL) we created, then the structure of
Gemini, and the twin paths of analysis and generation.

Cygnus Overview
When first designing Gemini we designed 3 prototype games
that would act as exemplars of games we wanted to be able
to generate. After this exercise, we noticed that the exist-
ing DSL, the Video Game Description Language (VGDL),
would not support the games we wished to generate. In part,
this was due to VGDL targeting the most common control
scheme of 80’s arcade games – a joystick with 4-way move-
ment and a single button, whereas we wanted mouse and
touch control. However, in large part this was due to lack-
ing general purpose rule construction – allowing only for
rules that determine game termination, entity movement me-
chanics from a fixed pool, and entity-to-entity interactions.
Cygnus offers refinements on these:

• Mouse/Touch Controls – Entities can react to being
clicked on and the cursor is a special entity that mechanics
can use (e.g., create an entity at the location of the cursor)



• Fixed Movement Mechanics – Cygnus allows for
full control over entity movement and rotation, with
atomic language constructs such as look at(A,B) “A
changes rotation to be facing B” and move(A,S,D) “A
moves in direction D with speed S” where D is ei-
ther a global (north,south,east,west) or local
(forward,backward,left,right) direction and
S is a scalar value—from which any of the movement me-
chanics defined in VGDL can be constructed, as well as
many not in VGDL

• General Rule Construction – Game rules are defined as
a set of preconditions P and results R linked with an iden-
tifier O. Preconditions can consider entity interaction a la
VGDL, but are not limited to that and can have arbitrary
scalar comparisons (e.g., R ≥ S “Resource R is greater
than or equal to scalar S”) or user input checks (e.g., did
the player press/hold/release button B)

The games describable by VGDL are a strict subset of the
games describable by Cygnus, and Cygnus represents an ad-
vance in game description languages for games in the con-
tinuous control action domain. Our goal was to support a
wide range of game constructs that could be compiled to
JavaScript code using the Phaser game engine.1

Gemini Overview
While it was important to design a language capable of sup-
porting the types of games we wished to generate, another
key element of the design was being able to reason about
the game at a fine granularity. Cygnus rules are represented
by collections of AnsProlog (Baral 2003) facts of the form
precondition(P,O) and result(O,R). For exam-
ple, a rule that, whenever a resource r is greater than or
equal to zero, decreases r by 1 could be represented as:

precondition(
ge(resource(r),scalar(0)), my_rule).

result(my_rule, decrease(r,scalar(1))).

These facts are then compiled into JavaScript for
use with the Phaser game engine, e.g., as the code
if(r>0){r-=1;}.

Since Cygnus is represented as set of AnsProlog facts, we
can use standard Prolog-style rules that derive further facts,
generating an answer set. We can refine the resulting gener-
ative space by providing a design intent as a set of AnsPro-
log constraints, ruling out cases we do not wish to appear.
We will now describe the twin paths of Gemini, the analysis
path, and the generation path.

Analysis Path Given the high-level goal of generating
games with a specific reading, Gemini needs to be able to
reason about games, so as to be able to ensure that gener-
ated games match the specified reading. To do this, we have
encoded 215 rules that reason about game rules and derive
further, higher-level knowledge about the game.

Some of these rules are simple facts about the game, such
as “The player controls an entity if it moves as a result of the
player’s input:”

1https://phaser.io/

Figure 1: The flow of a proceduralist reading. Green nodes
represent definitions (entities, resources, and other vari-
ables) and mechanics in the game, Blue nodes are the cul-
tural context, and Orange nodes are the derived dynamics,
aesthetics, and meaning. Arrows represent the directions in-
formation can flow in the process of a proceduralist reading
(e.g., Mechanics and Definitions inform Dynamics which
can then inform the Aesthetics or Meaning of a game).

player controls(E) :-
precondition(input(I),outcome(O)),
result(outcome(O),move(E, , ).
These rules may recursively refer to each other for more

involved reasoning, such as “The computer controls an en-
tity if the player doesn’t control it and it’s not static:”

computer_controls(E) :-
entity(E),
not player_controls(E),
not static(E).

The reasoning chain for an example of
computer controls(E) can be seen in Figure 2.
These rules encode part of a proceduralist reading process,
since higher-level notions of meaning like antagonism and
allyship refer to these notions of control and agency. The
dynamics (how the game operates in situ), the aesthetics
(how the game makes the player feel), and ultimately, how
the game could be read by a player are facts derived from the
definitions and mechanics of the game and culture-specific
knowledge (see Figure 1). The analysis path is able to take
in a game written in Cygnus and produce sets of consistent
readings of the game.

Generation Path Given the ability to analyze a set of
game rules and mechanics to derive a reading, the declar-
ative nature of ASP allows us to easily invert the process to
take a fixed set of readings and generate a game that meets
the desired reading. Choice rules are a construct in ASP that
allow for the solver to non-deterministically choose facts
such that they are consistent with all other facts and con-
straint rules. The simplest example in our code is:
{max entity(M)} :-
M = min entities..max entities.

which chooses an integer M to be the term of the predicate
max entity, such that
min entities ≤M ≤ max entities
In general, the choice rules that make up the generation

can be thought of under a few broad classes:



Figure 2: A simple reasoning chain to determine whether
a given entity is controlled by the computer. Nodes with
a red border represent facts for which the negation is true.
Building from a definition and a single mechanic, the chain
invokes 4 rules (or their absence) to produce the final Dy-
namics reading of “The computer controls the circle entity,”
which is built on the earlier readings that the circle does in
fact move (not static) and that the player does not con-
trol that entity (not player controls).

• Game Definitions – General facts about the game, such
as the number of entity types, the number of resources, the
visuals associated with each entity type, or the number of
timers found in the game

• Rule Definitions – As previously mentioned, a rule is a
set of preconditions and results. Gemini is able to arbitrar-
ily choose any combination of conditions, such as player
input, resource comparisons, entity-to-entity interaction,
or a timer elapsing, and pair them with any combination
of actions, such as the creation or deletion of an entity, the
modification of a resource, or the movement of an entity.

• Mechanic Choices – While de novo mechanic generation
is a core aspect of Gemini, we have also hand encoded
mechanics, such as an entity following the cursor or an
entity chasing another entity.

The inclusion of hard-coded mechanics could feel at
odds with our goal of game generation, but we found from
playtesting that many of the generated games contained con-
trol schemes that, while able to be played, induced too much
confusion and placed too much of a cognitive load on play-
ers to be useful for a generated experience (e.g., a game
generated where clicking on an entity causes it to move up,
pressing the mouse button while not clicking on it causes it
to move right, and pressing the up key causes it to rotate to
the cursor is technically controllable but is unpleasant for a
human to play). However, while the base definitions of the
mechanics are hard-coded, Gemini is able to modify any rule
with the addition of preconditions and results, which leads to
the generation of novel mechanics that are not hard-coded.
In essence, the hard-coded rules act as a biasing of the gener-
ator towards games that have interpretable movement mod-
els with little other effect on the generative space.

There are 163 game design common-sense constraints
placed on the generated games to ensure readability and
playability. By readability, we mean ensuring that they are
designed for human players. For instance, games become
very difficult to parse if there are a large number of precon-
ditions for a given rule (e.g., the player can only move right
when a red circle and blue square are touching, resource R
is above 3, resource S is between 2 and 7, they are holding
the mouse button, and pressing the right arrow key simulta-
neously), so we limit the number of simultaneous precondi-
tions to 3. Others perform static analysis on the rules to en-
sure that all outcomes are achievable. For instance, if there
is a rule predicated on a resource being greater than a thresh-
old, there must also be a way for that resource to increase.
Furthermore, to eliminate dead lock, the way to increase that
resource must not be predicated on the aforementioned rule.
While most of these rules are always hard constraints, there
are 19 that are able to be ignored if the user specifies that
they can be ignored. For instance, a general rule is that if a
resource is initialized, it must be used in at least one precon-
dition and it must be modified by at least one rule. However,
points are a common occurrence in games and they often are
modified by the game, but no rules are conditioned on them,
so if the user wants a point system in their game they can
disable the constraint.

In addition to common-sense design rules, Gemini can
also accept a design intent, the readings and specifications
with which the user wants the generated game to conform.
These can be as simple as specifying the number of different
types of entities, or more complex specifications such as:
:- not reading(hand eye coordination).
:- not reading(maintain,resource(r(1))).
label(resource(r(1)),concentration) :-
reading(good,resource(r(1))).

label(resource(r(1)),stress) :-
reading(bad,resource(r(1))).

or more simply, “The game should be read as a hand eye co-
ordination game that requires the player to maintain resource
r(1). If r(1) is determined to be good, it should be labeled as
concentration, and if r(1) is determined to be bad, it should
be labeled as stress.” (We note that in AnsProlog headless
rules are read as constraints that forbid the body from being
true, hence the not in the first two rules.)

After generating the rules and definitions of the game,
it must be made playable. The second phase takes in the
Cygnus game definition and compiles it to JavaScript for
use in with the Phaser game engine. The compiler operates
by converting the input into the Rensa (Harmon 2017) for-
mat, a Prolog-like relation specification. The compiler op-
erates by constructing Rensa relations from Cygnus code,
e.g., resource(value1) → 〈 value1 instance of
resource 〉. The Rensa relations are then converted to
JavaScript code in a context sensitive manner, owing to the
intricacies of the Phaser engine. For example, code resulting
from clicking on an entity is handled in a callback function,
as is code resulting from entity-to-entity collision, but when
a result is predicated on both clicking and entity-to-entity
collision the callbacks must be nested such that the collision
checking code is called from within the click callback.



It is very important that Gemini make things playable,
for a number of reasons. Perhaps the most important rea-
son from a non-research perspective is that Gemini was cre-
ated in service to a larger creative project so generating just
rules or VGDL (to then be interpreted by a cumbersome
framework) was not a possibility. However, the most impor-
tant reason is that the debugging process for rule writing re-
quires playability. A game might seem plausible when just
reading the rules, but only when played is it shown to be
untenable. E.g., a game where the player controls an entity
chasing another a fleeing entity seems reasonable and chal-
lenging; however, in the absence of any other rules, this will
inevitably lead to the chased entities getting stuck in the cor-
ners of the screen. Had we only read the rules, we would
have missed this interaction rising from the dynamics.

Examples and Discussion

We will now describe example games that have been created
in support of a larger creative work. Gemini is only part of
this experience, as the generated games sit side-by-side with
a choice-based interactive narrative, with both the narrative
and the game side communicating player actions (Samuel et
al. 2017). The graphics of the games are abstract with the
meaning being conveyed to the player via color, shape, and
most importantly the mechanics at play. The design intents
of these games come from a team that was tasked with creat-
ing prototype games, games that the team would have been
happy with were they generated by Gemini for this larger ex-
perience. We note that none of the prototype games would
have been expressible in VGDL and that none of the prior
systems would have been capable of satisfying any of the
design intents. We now describe the design intents given to
Gemini and describe a few of the generated games that re-
sult. Finally, we discuss the ways in which Game-o-Matic,
the only prior game generator that generated games with
specific meaning, would have been incapable of handling
these design intents and the ways in which all of the gener-
ated games outstrip the expressive capabilities of VGDL.

The Dinner Game One of the games was dubbed “the
dinner game,” a game that is supposed to be mimetic of eat-
ing dinner with friends. In the prototype, food would appear
at either the left or right side of the screen—the player’s goal
was to take (click on) the food and then pass it (click again)
to the other side. The stated intent of the game was to repre-
sent sharing food at a table with friends.

All of the generated games share the representation of a
communal table of food, represented as red circles, and the
player must pass food to their friends, represented as blue
circles. The design intent of the game is simply:

1. The game should involve sharing of one entity type,
amongst another entity type

2. The game should involve maintaining a resource
3. There should be no more than 3 sharers, and those entities

should remain constant

From that intent, we get games such as:

Dinner 1
1. Satiation is constantly decreasing
2. If satiation drops below 0, the player receives a message asking

them to pass the food
3. The friends consume the food when they overlap, which in-

creases satiation, but only if hunger is high enough
4. Food spawns periodically
5. The friends orbit around the food, but do not move toward it
6. The cursor repels food away when the mouse button is pressed
7. Hunger increases constantly throughout time
8. Hunger decreases when a friend consumes the food

Dinner 2
1. Satiation is constantly decreasing
2. If satiation drops below 0, the player receives a message asking

them to pass the food
3. The friends consume the food when they overlap, which in-

creases satiation
4. When one piece of food is consumed, another spawns
5. The friends wander, changing directions randomly
6. The food moves forwards, changing directions to face towards a

random friend when the mouse button is pressed

Some facets of these games remain constant, a conse-
quence of the design intent. For instance, maintenance of
a resource is recognized as the resource either increasing or
decreasing over time and the player must take action to keep
the resource from passing a threshold in the appropriate di-
rection. Similarly, sharing is recognized as when entities of
a type consume an entity of a different type, the result of
which helps the player achieve a goal of the game. These
result in the first 3 rules being identical for both games.

However, we see that the control schemes for each game
are completely different, and that the Dinner 1 game decides
to use the secondary resource “hunger,” not mentioned in the
intent, as a way of regulating the players’ actions.

Figure 3: Screenshot of a generated game. The player con-
trols the red circle by clicking and dragging it. The blue and
green circles randomly wander around the screen, wrapping
around if they collide with an edge. While a blue circle over-
laps the red circle, composure increases, but if a green circle
collides with the red circle, composure takes a drastic drop.
The number of green circles increases as tension increases.



The Supervisor Game The dinner game examples were
for design intents derived from the earlier prototyping ef-
fort. We have also experimented with new design intents for
games we have not previously hand-designed. This intent is
in support of a game that is supposed to represent a diffi-
cult conversation with the player’s supervisor. The player’s
supervisor is critiquing the player, and the player has to rec-
ognize the helpful advice and not be soured by the critique.
This design intent is conveyed as:

1. There are two entity types, and these entities must share
the same movement profile. Conversely, there are two
rules, each dealing with one of the entities and the results
of these rules should be opposed to each other. The one
that helps the player is labeled as “helpful criticism,” the
other as “hurtful criticism”

2. The goal is to maintain a resource, labeled as “compo-
sure,” and that resource must be seen as good

3. There is another resource, labeled as “tension,” that is
linked to difficulty

which results in games such as:
Supervisor 1
1. The player controls a red circle by clicking and dragging
2. While the red circle and a blue circle overlap, composure is in-

creased
3. When a red circle and green circle overlap, the green circle is

deleted and composure decreases
4. The green circles constantly spawn, doing so at a higher rate as

tension increases
5. Both green and blue circles wander around the screen, changing

directions randomly
6. When anything hits the edge of the screen, it wraps to the oppo-

site side

Supervisor 2
1. The red circle is constantly repelled from the cursor
2. When a red circle and a blue circle overlap, the blue cir-

cle is deleted, composure increases, and another blue circle is
spawned

3. When a red circle and green circle overlap, the green circle is
deleted, composure decreases, and a new green circle is spawned

4. Both green and blue circles orbit the red circle
5. The amount that composure decreases when the red circle and

green circle collide increases as tension increases

While we do not see identical rules, we certainly see the
commonalities that the design intent forces, namely the iden-
tical movement patterns and the opposite results for when
the red circle interacts with either a blue or green circle.
We see two completely different ways that “Tension is re-
lated to difficulty” is reified, in that it increases the amount
of harmful things for the first game and increases the amount
of harm for the second.

Discussion
We now discuss how Gemini enables these scenarios in a
way that would not have been possible with earlier game
generation systems, focusing on Game-o-Matic as it is the
only earlier system able to target specific interpretations.

The Dinner Game Game-o-Matic would be capable of
supporting the concept of “sharing” as one of its micro-

rhetorics (intent 1), but the other design intents are impos-
sible for it. Game-o-Matic only handles entity→ entity re-
lationships, so broad game level rules (e.g., the game should
involve maintaining a resource – intent 2) and entity spec-
ifications (e.g., no more than 3 sharers that should remain
constant – intent 3) are incapable of being represented.

The Supervisor Game None of the intents specified for
the supervisor game would be possible to be represented un-
der Game-o-Matic. While Game-o-Matic can represent rela-
tionships between entities, and it is possible to have two en-
tities that have all of the same relationships (e.g., A attacks
C, and B attacks C), there is no way to place a constraint
that those relationships should be reified in the same way
(e.g., Game-o-Matic is as likely to make it so A attacks C
by shooting at it, while B attacks C by chasing it than it is
to choose the same mechanics for both) making it impossi-
ble for it to meet intent 1. As in the dinner game, game level
specifications are impossible (intent 2), as are links between
resources and game concepts (e.g., a resource being linked
to difficulty – intent 3).

Other Systems We note that all of the produced games are
impossible to represent in VGDL, as they all contain com-
ponents not capable of being expressed.

Non-Interaction Rules Rules that are not a part of interac-
tions – Dinner 1 1, 7, Dinner 2 1

Mouse Controls Rules that utilize the mouse – Dinner 1 6,
Supervisor 1 1, Supervisor 2 1

State Changes Based on Resources Rules that use re-
source values for something other than threshold checks
– Supervisor 1 4, Supervisor 2 5

Movement Models Movement models that do not exist in
VGDL – Dinner 1 5, 6, Dinner 2 6, Supervisor 1 1, 6,
Supervisor 2 4

Not only are existing VGDL generators incapable of tar-
geting the generation of a game with a specified intent, the
expressive scope of VGDL would prevent a system from
generating these games if they had the aforementioned ca-
pability. Similarly, the semantics of the work by Zook and
Riedl (Zook and Riedl 2014) do not cover things such as
stochasticity or player input.

Conclusion
We have presented Gemini, a first of its kind generator that
both can statically analyze a game, to derive play aesthet-
ics and possible interpretations, and can generate games tar-
geting a specific interpretation. Gemini is built on a domain
specific language, Cygnus, which enables mechanics and en-
tire game forms impossible with VGDL, the most popular
game DSL. As Cygnus is embedded in AnsProlog, we use
the Answer Set Programming solver Clingo (Gebser et al.
2010), which affords the twin analysis and generation paths
of Gemini. We have shown representative games (not capa-
ble of being represented by existing game DSLs) produced
to target specific interpretations (not capable of being han-
dled by previous systems).



References
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
Cook, M.; Colton, S.; Raad, A.; and Gow, J. 2013. Me-
chanic miner: Reflection-driven game mechanic discovery
and level design. In European Conference on the Applica-
tions of Evolutionary Computation, 284–293. Springer.
Cook, M.; Colton, S.; and Gow, J. 2017a. The angelina
videogame design system, part i. IEEE Transactions on
Computational Intelligence and AI in Games.
Cook, M.; Colton, S.; and Gow, J. 2017b. The angelina
videogame design system, part ii. IEEE Transactions on
Computational Intelligence and AI in Games.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2010. gringo, clasp, clingo, and
iclingo.
Harmon, S. 2017. Narrative encoding for computational
reasoning and adaptation.
Martens, C.; Summerville, A.; Mateas, M.; Osborn, J.; Har-
mon, S.; Wardrip-Fruin, N.; and Jhala, A. 2016. Procedu-
ralist readings, procedurally.
Nelson, M. J., and Mateas, M. 2007. Towards automated
game design. In Congress of the Italian Association for Ar-
tificial Intelligence, 626–637. Springer.
Nielsen, T. S.; Barros, G. A.; Togelius, J.; and Nelson, M. J.
2015. Towards generating arcade game rules with vgdl. In
Computational Intelligence and Games (CIG), 2015 IEEE
Conference on, 185–192. IEEE.
Samuel, B.; Garbe, J.; Summerville, A.; Denner, J.; Harmon,
S.; Lepore, G.; Martens, C.; Wardrip-Fruin, N.; and Mateas,
M. 2017. Leveraging procedural narrative and gameplay to
address controversial topics. 2017 Workshop on Computa-
tional Creativity and Social Justice (CCSJ 2017).
Smith, A. M., and Mateas, M. 2010. Variations forever:
Flexibly generating rulesets from a sculptable design space
of mini-games. In Computational Intelligence and Games
(CIG), 2010 IEEE Symposium on, 273–280. IEEE.
Togelius, J., and Schmidhuber, J. 2008. An experiment
in automatic game design. In Computational Intelligence
and Games, 2008. CIG’08. IEEE Symposium On, 111–118.
IEEE.
Treanor, M.; Schweizer, B.; Bogost, I.; and Mateas, M.
2011. Proceduralist readings: How to find meaning in games
with graphical logics. In Proceedings of the 6th Interna-
tional Conference on Foundations of Digital Games, 115–
122. ACM.
Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I. 2012.
Game-o-matic: Generating videogames that represent ideas.
In Second PCG workshop.
Treanor, M. 2013. Investigating procedural expression and
interpretation in videogames. Ph.D. Dissertation, University
of California, Santa Cruz.
Worth, D. 1978. Beneath Apple Manor.
Zook, A., and Riedl, M. O. 2014. Automatic game design
via mechanic generation.


