
1

Modeling Game Mechanics with Ceptre
Chris Martens, Alexander Card, Henry Crain, and Asha Khatri

Abstract—Game description languages have a variety of uses,
including formal reasoning about the emergent consequences
of a game’s mechanics, implementation of artificial intelligence
decision-making where the game’s rules make up the space
of possible actions, automated game and level generation, and
game prototyping for the sake of low-time-investment design
and tinkering. However, in practice, a new game description
language has been invented for almost every new use case,
without providing formal underpinnings that follow generalizable
principles and can be reasoned about separately from the specific
software implementation of the language.

Ceptre is a language that attempts to break this pattern, based
on an old idea known as multiset rewriting. This paper describes
the language formally, through example, and in a tutorial style,
then demonstrates its use for writing formal specifications of
game mechanics so that they may be interactively explored,
queried, and analyzed in a computational framework. Ceptre
allows designers to step through executions, interact with the
mechanics from the standpoint of a player, run random simulated
playthroughs, collect and analyze data from said playthroughs,
and formally verify mathematical properties of the mechanics,
and it has been used in a number of research projects since
its inception, for applications such as procedural narrative
generation, formal game modeling, and game AI.

Index Terms—prototyping tools, game modeling, game descrip-
tion languages, multiset rewriting

I. INTRODUCTION

Game designers and developers think and communicate
using a number of well-established formal abstractions, such
as finite state machines, behavior trees, cellular automata,
context-free grammars, game trees, and state-space graphs.
These abstractions exist on the whiteboard as design tools as
well as in codebases as implemented programs in, essentially,
domain specific languages for authoring specifications within
the terminology of those abstractions (e.g. alphabets and
production rules for context-free grammars). The existence
of these formalisms as implementation independent languages
helps us document and transmit knowledge about any number
of phenomena of use to the creative practice of digital games,
including automated non-player character behavior, automated
opponent strategy, player modeling, procredural content gen-
eration, and other topics generally studied under the heading
of “Game AI.”

This paper argues for adding another formalism to the
Game AI formalism cannon, multiset rewriting, that happens
to correspond nicely to some common design patterns in
game AI and game design research. We describe Ceptre, a
programming language originally introduced in 2015 [38],
which implements multiset rewriting over user-defined, typed
domains. Ceptre was designed in reaction to a lack of tools
for prototyping game mechanics across a flexible range of
operational logics [69] without commitment to a specific mode

of rendering game state and player interaction. The implemen-
tation includes a novel language feature called stages, as well
as mechanisms for authoring typed domains, interacting with
simulations, and inspecting causal traces, all of which were
developed to support use cases discovered by the author during
development.

Ceptre can be thought of as consisting of two parts: (1) a
computational language; that is, a formally-describable set of
language constructs and definitions for their meaning; and (2)
an implementation of this language as a set of software tools,
comprising an authoring system intended for use in specific
contexts (e.g. game mechanic design, narrative modeling,
and procedural generation). This two-part conceptualization
enables us to define the semantics of the language in an
implementation-independent way so that it is replicable by
others, and so that additional use contexts (and corresponding
features and tools) may be built atop it.

Ceptre the language is fundamentally a variant of multiset
rewriting [29], which can be stated succinctly as a formal
system and independent from its implementation. Ceptre im-
plements a flexible, domain-independent version of multiset
rewriting with user-defined types and relations. It has in
common with many other description languages the feature
of describing state transitions in terms of preconditions and
effects, as seen in languages such as PDDL [25], Ludi [7],
Cygnus [65], and in game creation tools such as Kodu [43],
GameMaker [73], and Stencyl [36]. We briefly cover its
relationship to these systems in Section II. Ceptre the toolset
currently consists of a parser, interpreter, and command-like
based interactive execution engine, as well as a web-based
structure editor for a simplified subset of the language.

In this paper, we describe both the language and toolset in
detail, first through example and then through formal defini-
tion. We review applications of the language to a number of
domains, such as narrative generation [40], AI for interactive
fiction [13], quest generation [2], and formal reasoning about
game mechanics [39]. Thus, our key contributions in this paper
are:
• A tutorial explanation of multiset rewriting as applied to

game modeling, and a process for mapping game mod-
eling problems to the affordances of multiset rewriting;

• The technical contribution of describing Ceptre’s seman-
tics implementation-independent, reproducible way, such
that other programmers and researchers may reimplement
the underlying ideas in their languages and development
contexts of choice;

• A summary of empirical and mathematical evidence of
Ceptre’s important properties, including usability and
compositionality;

• A discussion of Ceptre’s formal properties, and the
strengths and limitations of those properties;

2

• A discussion of how Ceptre has been used since its in-
ception, and guidance for future use in the computational
study of digital and analog games.

II. RELATED WORK

Because Ceptre is based on a general-purpose, domain-
independent formalism (much like state machines), but its
implementation and tool support has domain-specific purposes,
it can be difficult to narrow down the set of existing formalisms
and tools to compare to. Here, we identify two main overlap-
ping categories of related work: game description languages,
which span more than just the multiset rewriting paradigm; and
multiset rewriting languages for specification and modeling,
which span more than just games as a domain.

A. Game Description Languages

A number of efforts have been made to define specification
languages specific to game rules under the banner of “game
description languages” (GDLs), beginning with the Stanford
GDL, which was used to specify and reason about the rules
of board games for the sake of “general game-playing” as
an AI problem [20]. Game description languages have been
developed for a number of reasons: to specify formally the
design space of mechanics for games for the purpose of auto-
mated generation of rules and mechanics [6], [65], levels [28],
and tutorials [22]; to reason formally about the emergent
consequences of games [6], [66]; to prototype and compare
game ruleset iterations [62], [63]; to model an AI agent’s
internal understanding of the game world for the sake of
robust decision-making behavior [20]; and more. In 2013,
a Dagstuhl meeting of digital games researchers identified
a need for GDLs specific to video games and outlined a
proposal called VGDL [17], which was later implemented in
Python as PyVGDL [61] and now forms the basis for the IEEE
GVGAI (general video game AI) series of competitions [34],
[54]. Other GDLs that address video game design specifically
include EGGG [51], Gamelan [53], Machinations [16] (and
MicroMachinations [30]), and Cygnus, the underlying DSL of
the Gemini game generation system [64], [65].

The GDL approach entails creating affordances for spec-
ification that are unique to games: built-in constructs may
include player control, entity movement and collision, or piece
movement on a grid (in the case of board games). In Mateas
and Wardrip-Fruin’s parlance, each GDL embeds a fixed set
of operational logics [69], or underlying code abstractions
for common sets of game mechanics, that they support. This
approaches trades generality for a more rigid definition of what
constitutes a game in their specific applications.

By contrast, formalisms such as state machines, regular
languages, and context-free grammars have provided long-
running foundations for much of computer science, including
game AI. We argue that game AI would benefit tremen-
dously from formal languages defined with the same level
of formal rigor as these other foundational tools if we want
them to outlast the specific research projects in which they
have been applied to date. Accordingly, Ceptre is based on

TABLE I
MAPPING FROM GAME DESIGN CONCEPTS TO FORMAL CONSTRUCTS.

Game design concept Mathematical construct
Game states Multisets of predicates
Game rules Multiset rewriting rules

Game state transition Rule application
Playtrace Sequence of rule applications

multiset rewriting, a general mathematical toolset that can be
succinctly defined in a reproducible way. Multiset rewriting
nicely coincides with a variety of common abstractions found
in games, but nothing is built into it specific to a particular
notion of what a game is made out of, similar to other
formalisms such as context-free grammars and state machines.
Support for programmer-defined types and constants ensures
domain flexibility. At the same time, multiset rewriting is
limited enough (in contrast to full-featured, general-purpose
programming languages) that we can still formally analyze
and reason about games specified in it.

B. Multiset Rewriting- and Linear Logic-Based Modeling
It follows from the general applicability of multiset rewrit-

ing that it has been used in a number of other domains outside
of games. Two languages in particular, K [58] and Maude [12],
have been used extensively for modeling and reasoning about
the semantics of programming languages. In the programming
languages community, encoding and formally proving prop-
erties of a language is a common research activity known
as mechanizing metatheory [24], and there are many tools
that support this activity, including interactive proof assistants
and logical frameworks [57]. Ceptre’s origins lie within this
tradition: its direct predecessor is Celf [60], based on CLF,
the Concurrent Logical Framework [70], [10]. Celf builds on
a tradition of linear logic programming languages, including
the Linear Logical Framework (LLF) [9], Lygon [72], and
Forum [44], each of which implements an overlapping set
of features to model and reason about domains as diverse
as molecular biology [11], voting protocols [15], and cryp-
tographic security protocols [5].

Other rule-based systems bear a strong resemblance to
MSRW, but fall outside the formal definition. These include
the NetLogo [67] and AgentSheets [56] tools, also touted
for cross-domain complex system modeling, and Kappa [4],
a rule-based system designed for molecular systems biol-
ogy modeling, as well as PuzzleScript [32], whose pattern-
matching syntax was indirectly influenced by linear logic
(citing personal communication). One could argue that the
Planning Domain Definition Language (PDDL) used for spec-
ifying problems for AI planners [21] is also similar, given
that both share a syntax of specifying preconditions and
effects of actions in terms of logical predicates, but there are
subtle formal distinctions that distinguish their applicability in
different use cases—see Section V-A for discussion.

III. MODELING GAME MECHANICS WITH MULTISET
REWRITE RULES

In Table I, we outline our representational approach, map-
ping concepts in game design to the formal structures of

3

Fig. 1. A multiset rewriting rule describing the Minecraft recipe for a wooden
pickaxe: a crafting table, two sticks, and three planks can be rewritten into a
crafting table and a wooden pickaxe.

multiset rewriting [29] (MSRW). Multiset rewriting is a math-
ematical formalism in which systems can be specified as sets
of rules that rewrite states, where states are represented as
multisets (i.e. sets whose elements can occur more than once).
The general process for modeling a game in MSRW is to
design a set of predicates that constitute game states, describe
game states as multisets of those predicates, and describe game
rules (mechanics) as multiset rewriting rules. Rewriting a state
means pattern matching on it and replacing the matched subset
with a new set. At its core, a multiset rewriting-based model
is composed of these rules of the form A(B, where A and
B are multisets. This technique turns out to be a powerful
representation scheme for games, as we will show.

To explain MSRW formally, we will develop a running
example based on Minecraft [47], a video game in which
resources found in the game environment are collected and
used in “crafting recipes” to create new items. As a crafting
game, Minecraft gives us a reason to talk specifically about
multiplicity of set elements, which we will use to directly
represent the quantity of a resource. See Figure 1 for an
example rewrite rule based on the Minecraft recipe for crafting
a wooden pickaxe from two sticks and three planks.1 A
complete implementation of this example in Ceptre is available
on GitHub.

To start with the bare minimum amount of formalism, we
will use uninterpreted symbols (identifiers written in mathsf
format) as the elements of multisets, which we will refer to
as propositional atoms or atomic propositions (atomic because
they cannot be broken into constituent pieces). These symbols
also nicely correspond to resources in the Minecraft example.
However, we will eventually expand multiset elements to
include predicates in first-order logic that accept arguments,
which enables us to represent much more than resource-
exchange mechanics.

A. Game States as Multisets

A game state keeps track of all of the variables in the
game world and their current value. In a relational model,
the association between a variable and its value is usually
represented as a logical predicate p(var, val). However, a
“nullary” predicate p (one that has no arguments) can also
represent a part of a game state. In the multiset rewriting
model, it can be helpful to think of such a predicate p as
a resource. Its absence represents a lack of that resource in

1This example model depicts a simplification of Minecraft recipes in which
the 2D grid layout of ingredients is discounted.

Rule name Rule
chop tree tree (wood
chop wood wood (plank4

chop plank plank (stick4

craft table plank4 (table
craft wood pickaxe table, plank3, stick2

(table,wood pickaxe
craft stone pickaxe table, cobble3, stick2

(table, stone pickaxe
mine stone wood pickaxe, stone

(wood pickaxe, cobble

Fig. 2. A selection of (simplified) Minecraft crafting recipes in multiset
rewriting notation. Each tree can be chopped to produce wood; each unit
of wood can be divided into four planks; each plank can be further divided
into four sticks. Four planks can be used to create a crafting table. With the
crafting table, two stick, and three planks, we can create a wooden pickaxe
(and we retain the crafting table). The wooden pickaxe can then be used to
mine stone (converting it to cobble). Cobble and sticks can be used (if we
have the crafting table) to craft a stone pickaxe.

the current state; its presence—and quantity!—represents that
resource’s availability.

For example, a Minecraft environment containing two trees
and three stones could be represented by the following multi-
set:

{tree, tree, stone, stone, stone}

Sometimes multisets are written more concisely by anno-
tating each predicate with its multiplicity as an exponent:

{tree2, stone3}

This notation closely mirrors the depiction of a player’s
inventory in Minecraft.

Syntactically, we define multisets ∆ as comma-separated
lists of propositions p. We then stipulate that these lists form
a monoid under the comma operator (,), with the empty
multiset ∅ as a unit element. That is, they obey associativity,
commutativity, and unit laws as follows:

∆1, (∆2,∆3) = (∆1,∆2),∆3

∆1,∆2 = ∆2,∆1

∆, ∅ = ∆ = ∅,∆

This algebraic formulation allows us to write our rewrite
rules without concern for the order in which elements appear
in the state.

B. Game Mechanics as Multiset Rewrite Rules

In the Minecraft setting, modeled after early human tool
construction and use, certain resources are found in the envi-
ronment around the player, such as trees and stones. Players
can then craft combinations of these materials into tools, such
as a crafting table (needed for all subsequent crafting tasks),
pickaxes, and forges, which can then be used for further
mining and crafting.

https://github.com/chrisamaphone/interactive-lp/blob/master/examples/minecraft.cep

4

{tree, tree, stone, stone, stone}

→chop tree

{wood, tree, stone, stone, stone}

→chop tree

{wood, wood, stone, stone, stone}

→chop wood

{plank, plank, plank, plank, wood, stone,
stone, stone}

→craft table

{table, wood, stone, stone, stone}

→chop wood

{table, plank, plank, plank, plank, stone,
stone, stone}

→chop plank

{table, stick, stick, stick, stick, plank,
plank, plank, stone, stone, stone}

→craft wood pickaxe

{table, wood_pickaxe, stick, stick,
stone, stone, stone}

→3
mine stone

{table, wood_pickaxe, stick, stick, cobble,
cobble, cobble}

→craft stone pickaxe

{table, wood_pickaxe, stone_pickaxe}

Fig. 3. A sequence of transitions that shows how to craft the stone pickaxe
from two trees and three stones. Resources that are matched by the succeeding
transition are highlighted, and new resources produced as a result of applying
the transition are in green. A superscript on a rule rn indicates that the rule
r is applied n times in sequence.

The transformation of resources is a perfect fit for multiset
rewriting, in which rules are given that replace some set of
resources with another. A rule A (B, where A and B are
both multisets, indicates that we can replace the resources
represent A with with those represented by B. Figure 2 gives
some of Minecraft’s recipes in this representation scheme.

We will refer to the A part of a rule A (B as its
antecedent, and the B part as its consequent. It will also
be helpful to introduce a name for each rule. We will
refer the preceding rules as chop_tree, chop_wood,
chop_plank, craft_table, craft_wood_pickaxe,
craft_stone_pickaxe, and mine_cobble respectively.
For each rule name r corresponding to a rewrite rule A(B,
we say that r has the signature A(B.

C. Game Actions as Transitions

A rule, or game mechanic, represents a general schema for
how a game action may take place. In our example, all of the
rules have been used to represent player actions, although rules

can also represent engine-controlled actions as well (such as
the laws of physics).

Next we draw a distinction between such a rule schema and
its instantiation as an action on a particular game state, which
we refer to as a transition. This distinction will be particularly
useful when we introduce rules that range over parameters.

For now, we can think of a transition as a matching up
between resources in the game state ∆ and a given rule’s
antecedent. For example, if our Minecraft inventory contains
a crafting table, two sticks, and three planks, then we can
craft a wooden pickaxe using the craft_wood_pickaxe rule.
If we have more than enough of each of these ingredients,
then we need to specify which ones we are going to use.
One way to write this concept formally is to say that our
original game state ∆ can be split (and rearranged) into an
equivalent state ∆A,∆

′, where ∆A matches the antecedent A
of the rule we want to apply, and ∆′ is whatever remains. We
say a transition is enabled when its antecedent—the A part of
the rule A (B—is matched by some subset of the current
state.

Definition 1 (Transition). If ∆ = A,∆′, and there exists a
rule r : A(B, then A,∆′ →r is an enabled transition.

We can then define the application of a transition
A,∆1 →r:A(B ∆2, representing how a transition transforms
one state into another:

Definition 2 (Transition Application). If ∆ = A,∆′, and there
exists a rule r : A(B, then

∆→r:A(B B,∆′

For example,

{plank, tree2, stone} →chop tree

{wood, plank, tree, stone}

Transition systems like this are common in formal lan-
guage definitions, including more widely-used formalisms
such as finite-state automata. However, multiset rewriting has
the distinct advantage over this approach that states are not
considered monolithic: we can look inside them and refer
to changing only those components that matter for the rule,
leaving the rest alone. In other words, multiset rewriting rules
allow us to represent how, for any given game mechanic,
only a subset of the state actually changes. This property,
formally defined by transition application above, is sometimes
known as a frame property an is an important aspect of the
compositionality afforded by such models, as we will revisit
in Section V-A.

If we iterate our transition relation by repeatedly applying
rules, we arrive at a notion of transitive closure ∆ →∗ ∆′,
which says that ∆ can be transformed into ∆′ through repeated
application of rules. See Figure 3 for an example.

After applying this sequence of transitions to reach that
last state, no more rules apply. We refer to this condition as
quiescence.

5

Fig. 4. A causal trace of Minecraft gameplay.

D. Gameplay as Causal Execution Trace

As an execution semantics, the transition relation ∆→r ∆′

is not deterministic; for any given game state, several rules
may apply. For example, in the state {plank5}, both the
craft table and chop plank rules apply. If we apply the
first of these rules, the resulting state after rule application
will be {table, plank}. If we choose the second, it will be
{stick4, plank4}. The selection of the rule in this case can be
thought of as delegated to an external decision-making source
(such as a player or AI selection algorithm). In this sense, a
collection of rules and an initial game state establish a space
of play, where at any point, a rule that applies represents a
valid move for the decision-maker to make.

Any given transition sequence represents a play trace, or a
particular selection of actions (made by all decision-makers),
resulting in a record or a history of the game state’s evolution.
Because we independently track which resources are used and
generated by a given rule, we can actually represent this record
with more structure than a simple sequence. Figure 4 shows
a play trace using the running Minecraft example, which was
presented linearly in Figure 3. Oval nodes represent resources

(elements of the game state), and rectangular nodes represent
transitions. An edge from a resource to a transition means
that the transition consumed the resource, and an edge from a
transition to a resource means that the transition produced the
resource.

This graph structure allows us to observe parallelism in
the play trace: for instance, the two initial sequences of
chopping a tree followed by chopping wood into planks, have
no dependencies (edges) connecting them, indicating that these
sequences could be performed in arbitrary order with respect
to one another (or simultaneously). Likewise, the structure
reveals causal dependence and independence: we can see that
chopping a plank into four sticks allowed us to split this
resource so that half of it could be used for crafting the wood
pickaxe, and then later, the rest could be used for crafting the
stone pickaxe. This notion of independence between actions
has been formalized in prior work through the notion of
“concurrent equality” [70].

E. Term Quantification

The Minecraft-based example, with its emphasis on resource
transformation and crafting has been useful to us for illustrat-
ing the basic principles of multiset rewriting, but fundamen-
tally, this system is limited and difficult to scale. Most practical
uses of multiset rewriting depend on predicate logic as a basis
for multiset elements, which enables us to quantify over terms
and write rule schema that may apply to multiple different
instances. That is, for example, instead of representing a player
inventory as a multiset whose elements are atomic resources
(i.e. nullary predicates) such as plank, we would like the option
to represent game state as a multiset of predicates that can take
arguments, such as inventory(planks, 3), where plank and 3 are
terms and inventory is a predicate.

As soon as we introduce term arguments, it becomes im-
portant to be able to quantify over them: for example, now the
chop wood rule’s antecedent needs to decrement the number
of wood blocks and increment the number of planks in the
player’s inventory. To be fully general, we need to introduce
a quantifier form ∀x.φ (for rules φ) so that rules can range
over term variables. Then, a general decrementing rule can be
written:

chop wood0 : ∀W,P
inventory(wood,W), inventory(plank, P)

(inventory(wood,W − 1),

inventory(plank, P + 4)

But what if we don’t have any wood to chop? The rule ought
no longer to apply, but technically 0 is a valid instantiation
for the variable W . One approach to fixing this problem is
to include an additional premise to the antecedent, W > 0,
but this premise has a different nature to the others, since
inequality is defined by general mathematical principles rather
than by the presence of specific resources. We will introduce
the ability to include predicates of this kind later, but for now,
we present a more elegant solution based on pattern matching.

6

Predicates can be restricted to take arguments of certain
types. The definition of types is discussed in section IV. We
can then restrict W and P to be natural numbers and write

chop wood : ∀W,P
inventory(wood,W + 1), inventory(plank, P)

(inventory(wood,W), inventory(plank, P + 4)

This rule will only apply when there is a resource of the
form inventory(wood,W + 1). That is, the second argument
has to match the pattern of the successor of another natural
number, i.e. be greater than 0.

We elide the formal definitions necessary to make this
kind of pattern matching and transition semantics precise.
In the next section, we describe our implementation of a
programming language called Ceptre that enables a user to
write computer-interpretable definitions of this nature.

F. Substitution

Once we introduce quantification, as above, we introduce
predicates whose arguments can be logic variables. A rule
over such predicates cannot apply to a state directly: first, we
need to match concrete elements of the state to the abstract
state pattern in the precondition of a rule. To define how a rule
transforms a state, then, we need to describe how to substitute
concrete terms for variables.

Definition 3 (Ground). We define any term, predicate, or rule
as ground iff it contains no logic variables—that is, it only
refers to concrete terms.

For example, at(alice,wonderland) is ground, but at(X,Y)
(in the context of a rule where X and Y are bound variables)
is not.

Multiset rewriting programs maintain the invariants that
every state (multiset) consists only of ground predicates. That
is, a rule should never introduce variables into the state. To
maintain this invariant, we require that the right-hand side of
a rule not contain any variables that don’t also exist on the
left-hand side.

Determining whether a rule applies now becomes equivalent
to finding ground terms in the state that can be substituted for
variables, so that the resulting predicates match the left-hand
side of the rule:

Definition 4 (Rule Application). A rule r : ∀~x. A (B
applies to a state S iff there exist ground terms ~t such that
[t/x]A is a subset of S.

The notation [t/x]A can be pronounced “t for x in A” and
refers to substitution, resulting in a new multiset A′ in which
all instances of x have been replaced by t.

Definition 5 (Substitution). [t/x]M , pronounced “substitute t
for x in M ,” computes a new predicate in which each instance
of the variable x occurring in M is replaced with t. M can
be a predicate, term, proposition, or rule.

For example, [wood/X]inventory(X, 5) results in
inventory(wood, 5). We can also use similar notation

Fig. 5. A typical game modeling workflow with Ceptre. Light yellow nodes
represent human-controlled input; light green nodes represent what Ceptre
generates at runtime.

for the simultaneous substitution of multiple terms for
multiple variables, e.g. [wood/X, 5/Y]inventory(X,Y) =
inventory(wood, 5).

Defining substitution gives us the means to describe the
operational semantics of the state rewrite:

Definition 6 (State Transition). A state S can rewrite to a
state S′ under rule r : ∀~x. A (B iff r matches S with
substitution [t/x], and S′ = S − [t/x]A ∪ [t/x]B.

For example, suppose the state contains

inventory(wood, 3), inventory(plank, 0)

If we have the chop wood rule as given previously, then the
substitution [2/W, 0/P] allows us to instantiate the rule as:

chop wood : inventory(wood, 3), inventory(plank, 0)

(inventory(wood, 2), inventory(plank, 4)

Now the left-hand side of the rule exactly matches the two
atoms in our state and we can apply the previous semantics
for multiset rewriting.

IV. THE CEPTRE LANGUAGE

Ceptre is a programming language implementation of the
multiset-rewriting formalism described previously. The lan-
guage includes constructs for user-defined sets of terms, first-
order predicates that range over those terms, and rewrite
rules that manipulate world states described in terms of
(multisets of) those predicates. Authors write programs that
consist of signatures of multiset rewriting rules, representing
the space of possible actions for a specific game (as discussed
in the previous section). Programs also include initial game
states, represented in ceptre as contexts (multisets of ground
predicates). Ceptre can then be run as an interpreter for this
model that shows what specific actions apply at each step in
the game trace, and either permits an action to be selected
interactively or chooses nondeterministically from the legal
actions. A diagram of the modeling workflow can be found in
Figure 5.

We detail the components of a Ceptre program next, using
a simplified model of the board game Pandemic [33] as a
running example. A complete implementation of this example

7

Fig. 6. The Pandemic board game, set up with role assignments, player city
card hands, and pieces in their initial location.

Predicate form Argument types Meaning
adjacent C C′ C,C′ : city C is adjacent on the map to C′

res ctr C C : city C is a research center
disease C C : city C has a disease cube
at P C P : player, C : city P is located at C
turn P P : player P has a turn
hand P A P : player, A : card P has A in their hand
city card A C A : card, C : city A is the city card for C
discard A A : card A is in the discard pile
draw P P : player P is obliged to draw a card

TABLE II
PREDICATES DEFINED FOR THE PANDEMIC EXAMPLE.

for web-based Ceptre is available on GitHub, and can be
downloaded and imported into the hosted version of the web
editor on Glitch.

A. The Ceptre Editor

Since our target audience for Ceptre is game designers,
not only programmers, we searched for design principles that
would support this audience. Research on novice-friendly pro-
gramming environments supports the use of structure editors,
editors in which programmers manipulate program structure
directly rather than text which is parsed into programs [45].
Structure editors include block-based programming tools,
which have a demonstrable positive effect on learning for
programming novices [71], leading to their adoption in in-
troductory programming environments such as Scratch [37],
Greenfoot [31], and Alice [27].

In light of these findings, we designed the Ceptre Editor,
a web-based programming tool for a subset of the Ceptre
language. The Ceptre editor uses standard HTML elements
(drop-down menus, buttons, and checkboxes) to support direct
editing of program structure, requiring the user to type only
when first naming identifiers. After an identifier has been
named, it will appear as an option in drop-down menus in
appropriate locations. We will illustrate the worked example
in this section with screenshots of Ceptre Editor programs in
lieu of text-based syntax, though the program can be written in
either format (and text-based Ceptre code can be automatically
generated from the editor).

Fig. 7. Initial state predicates corresponding to the game map.

Fig. 8. Initial state predicates corresponding to the initial game configuration.

B. Game States as Multisets

A depiction of the Pandemic board game in play is shown
in Figure 6. The game is cooperative, with each player
contributing to the overall goal of mitigating and eradicating
disease pandemics by traveling to infected locations (where
level of infection is represented by an integral quantity of
“disease cubes”), treating the sick (which removes a disease
cube), and researching cures (by building research centers).
Between each player’s turn, the game randomly adds infection
to cities and potentially propagates the disease to neighboring
cities. Each player has four actions available on their turn.

For the sake of concise demonstration, we model a simpli-
fied rule set based on Pandemic. In our model, each player has
the same set of abilities, that there is only one type of disease,
and consists of a much smaller world map with just 5 cities.
A game state consists of the contents of the deck of cards, the
location of each player, the quantity of disease cubes on each
city, the number of outbreaks that have occurred so far, and so
on. In our simplified model, We can map each of these state
variables to a logical predicate, e.g. the location C of players
P to predicates at(P,C). The full table mapping game state
components is given in Table II.

Given this choice of vocabulary for representing game
states, a specific game state, including the initial configuration,
can be represented by a multiset of ground predicates—that
is, predicates whose arguments are concrete terms, with no
variables. The code in Figure 7 shows how the multiset
representing (part of) the initial world map is written in the
Ceptre Editor, and Figure 8 shows the same for (part of) an
initial game state in which a player starts off with four turns.

https://github.com/chrisamaphone/ceptre-editor/blob/main/examples/pandemic-board-game.txt
https://ceptre-editor.glitch.me/

8

Fig. 9. Defining predicates by giving their argument types in the Ceptre
Editor.

C. Declaring Type and Term Constants

In order to facilitate readable and bug-free domain author-
ing, Ceptre programs include declarations for typed terms and
predicates, which the author uses to define the valid syntax
of game rules. For example, to represent “a character is at
a location,” the predicate at must take two arguments, a
character and a location. This design means early failure in
the case of mistakes like misspelled argument names, swapped
arguments, or missing arguments.

Users define types by providing an identifier for the type
and an enumeration of what elements are members of that
type. For example, when specifying the rules of Pandemic,
we can create a type for cities called city. Then, we can
create term constants for each individual city, declaring each
to have the type city. The Ceptre editor supports only these
simple enumerative types and calls them “sets.”

Once the user has declared the types (or sets) of term
constants, they can define predicates by giving their type
signatures. This process is depicted in Figure 9. The dropdown
menus in the Ceptre Editor are automatically populated with
the sets defined by the user.

D. Game Mechanics as Multiset Rewrite Rules

After defining our representation language, we can write
rules that correspond to gameplay mechanics in Pandemic. For
example, on each player’s turn, they have four available actions
(represented by the presence of four “turn” tokens for a given
player). They can spend these actions on any of several choices
of moves, including moving around the map, treating disease
cases (removing disease cubes from the map), and building
research centers. The “drive” move, for example, allows a
player to spend a turn to move directly to any adjacent location
on the map. Using the mathematical syntax from Section III,
we can represent this action as follows:

∀p, c, c′. turn(p), at(p, c), adjacent(c, c′) (

at(p, c′), adjacent(c, c′)

This expression is represented by the first snippet of Ceptre
code shown in Figure 10. Note that rather than requiring
the author to repeat “permanent” information, like the edges
between adjacent cities, in both the preconditions and effects
of the rule, we give every condition a check-box for whether
it should be removed from the state or not. Since the player
must spend a turn, and since they will no longer be at their

Fig. 10. Player moves in Pandemic (drive, build, fly, and treat), represented
as a Ceptre rules.

previous location after making this move, those predicates are
removed, but the adjacency predicate remains.

Three additional examples are given in Figure 10, showing
encodings of the Pandemic rules that enable players to fly
to non-adjacent locations (if they hold the corresponding city
card), treat disease cases in their current location, and build
research centers in cities for which they also possess the city
card.

9

Fig. 11. The Ceptre Editor interface for browsing and selecting transitions
manually or initiating automatic selection.

Fig. 12. The Ceptre Editor interface for viewing the sequence of states and
actions.

E. Execution

Running a Ceptre program is possible after the rules
and initial state have been provided. Because execution is
nondeterministic, the system enables the user to “steer” the
simulation manually, or alternatively to allow uniform random
selection at each step from the space of all possible transitions.

A transition in Ceptre is a single step of program execution,
or equivalently, an instantiated rule: that is, a rule where all
variables have been substituted with specific terms so that
its precondition matches a segment of the state. Transitions
are thus presented as the name of a rule followed by its
“arguments,” or substituted terms, that can replace the rule’s
logic variables to make its precondition match the state. Many
such transitions may be possible in any given state, so Ceptre
generates a list of all possible transitions. When the Ceptre
rules represent game mechanics, the list of possible transitions
represents the set of “moves” available to the player. See
Figure 11 for a screenshot of how Ceptre would generate the
available moves for our encoding of Pandemic. 2

Transitions can be selected manually, if the program is run
in interactive mode, or automatically at random. As transitions
are selected, the state evolves, according to the semantics
described in Section III. A trace of this activity is shown to the
user in the form of a stream of alternating actions and states

2Because Ceptre distinguishes between copies of the “same” atom in the
multiset, in some cases, identical transitions will be listed more than once.
For interactive Ceptre programs, this can be regarded as a presentational quirk
that can be remedied on the rendering side where it is undesired.

stage play = {
% Rules for player actions...

} #interactive play.

stage play -o stage auto.

stage auto = {
% Rules for automatic actions...

}

stage auto -o stage play.

Fig. 13. Skeleton of a stage-based Ceptre program.

(see Figure 12). The simulation stops running when the user
chooses to halt execution or it reaches natural quiescence.

F. Stages

Certain idioms are difficult to express in pure multiset
rewriting with the simple quiescence semantics (stop when no
more rules apply) that we have given in the previous section.
In the example of Pandemic, for instance, after the player
completes a full move, the “game” or external world gets a turn
to propagate diseases and pass control over to the next player
in sequence. Making one set of rules interactive (controlled
by the player) and one set of rules automatic (running the
“game’s turn”) is a key element of most game design, but not
possible to represent in the multiset rewriting formalism.

In order to support interactive/automatic turn alternation,
among other common game rule idioms, we invent a language
construct called a stage, which is a named collection of
rules that runs to quiescence, and inter-stage rules, which
pass control among stages. For a sketch of how stage-level
programming looks, see Figure 13.

The full, text-based version of Ceptre supports stages, and
we have implemented a stage-based version of Pandemic,
available online, as a supplement to the program presented
here. However, the Ceptre Editor currently lacks stages as a
feature, so the worked example shown here focuses on what
we can represent without them. A more complete discussion
of stages can be found in Martens’s Ph.D. thesis [39].

G. Implementation

Both of Ceptre’s implementations rely on standard rewrite-
rule-based language implementation techniques, such as term
matching to enumerate the set of possible rule applica-
tions [55]. The text-based language is written in Standard ML
and uses YACC for parsing. The web-based editor is written
in entirely client-side HTML and JavaScript. The source for
both implementations is on GitHub: text-based, web editor.
Downloadable binaries are available for text-based Ceptre.

V. EVALUATING CEPTRE’S USABILITY AND USEFULNESS

Ceptre is a multidisciplinary project, spanning human-
computer interaction (HCI), programming languages (PL),
formal logic, and game design, so its evaluation requires a mul-
tidisciplinary approach. Traditionally, programming languages

https://github.com/chrisamaphone/interactive-lp/blob/master/examples/pandemic-multistage.cep
https://github.com/chrisamaphone/interactive-lp
https://github.com/chrisamaphone/ceptre-editor
https://github.com/chrisamaphone/interactive-lp/releases/

10

and logics are evaluated through formal proof: mathematical
definitions lend themselves to asking formal questions like
whether it is possible to write certain programs or prove certain
theorems. HCI gives us tools to understand a language in
terms of its affordances for human interaction, which of course
depends not only mathematical properties of the language, but
also its syntax, tooling, ecosystem, and contexts in which the
language is being learned. All of these factors together affect
the degree to which people can express their intended meaning
through the language, reason about the programs they write,
and gain useful insights from their models.

Thus, we discuss evaluation in three ways: first, by describ-
ing some formal properties of the language that allow us to
compare and contrast it with other formalisms; second, by
describing an empirical, qualitative study of the Ceptre Editor
tool; and finally, by describing in less formal terms the way
that Ceptre has been used by and influenced other researchers,
practitioners, and game designers.

A. Formal Properties

1) Compositionality: A key idea from programming lan-
guage design compositionality, which enables programmers
to reason about (and write code for) programs in terms of
their constituent parts independently. This idea shows up in
many forms, including the idea of “context-free” grammars
for parsing, as well as implications for the implementation
of language interpreters, type systems, static analyses, and
compiler transformations [26]. Compositionality is often seen
as a key design requirement for programming languages,
program synthesis engines, and compilers, as evidenced by
a sample of highly influential work in these fields ([19], [1],
[49]).

Formally, a compositionality property for a function f and
combinator · is one that takes the form, “ f(X · Y) =
f(X)̂·f(Y).” X , Y , and X ·Y are all members of some set A
closed under the combinator ·, and ·̂ is a translation of · to the
codomain of f (i.e., if f : A → B, then · : A × A → A,
and ·̂ : B ×B → B).

Ceptre is compositional in the following senses: first, com-
positionality of program execution can be stated as follows:

Compositionality of Program Execution. For any contexts
∆, ∆′, and Γ, if

∆→∗ ∆′

then
∆,Γ→∗ ∆′,Γ

That is, adding some extra stuff (here represented by Γ) to
the program as it runs does not change the fact that it can
run the same way it ran without that extra stuff. Note that,
because the transition relation→ is nondeterministic (the same
context can evolve to multiple different successor contexts),
this does not rule out the possibility that Γ might contribute
new ways for the program to evolve. It is entirely possible that
there is some program trace that witnesses ∆,Γ→∗ Θ, where
∆ 9∗ Θ—but it is always possible to evolve the program so
that the elements of Γ don’t interact with ∆.

Notably, this property does not hold of languages like
PDDL, which are superficially similar to multiset rewriting—
actions in PDDL specify logical facts that are true before and
after the execution of the action—but which also permit “dele-
tion” of facts that do not appear in the premises (preconditions)
of the rule. As a consequence, an action would have a different
effect on the world state depending on whether or not the
deleted fact is true before the execution of that action.

A second sense in which Ceptre is compositional has
implications for the programmer’s ability to reason about
programs as they write them. In essence, any given rule within
a Ceptre program (or, more accurately, within an individual
stage) can be reasoned about independently of the other rules
in the program. That is, within the program

. . .Pre . . .

rule : A(B

. . .Post . . .

The rule rule has the same meaning (the same effect on the
context if it is selected during execution) as it would in any
other program where Pre and Post were different. This feature
distinguishes Ceptre from other game description languages
like Kodu and Puzzlescript, in which the order of rules has
meaning (related to priority when more than one rule applies).
In these settings, a rule’s meaning can only be determined in
the context of all rules that precede it. Similar complexities
arise if we add probabilities or weights to rules. Ceptre’s
introduction of stages attempts to contain this complexity by
introducing ordering effects at stage boundaries, but not within
an individual stage.

2) Decidability of Reachability: One common reaction to
Ceptre’s surface-level similarity to the planning formalism
PDDL is an interest in static analysis of game specifications:
could we, for instance, write a set of rules and then use a
search algorithm to definitively prove whether a certain game
state is reachable from a starting state?

This question is formally known as reachability (can we
reach one state from another), and the question of its decid-
ability depends on which fragment of multiset rewriting we
are considering. For example, the fragment that corresponds
with planning problems does indeed support search using
similar algorithms. This fragment limits the term language to
be finite by disallowing e.g. numeric constants in rules (such
as those seen in Section III-E). For an analysis of reachability
problem decidability in a similar formalism (Petri nets), see
prior work [23], [18].

This decidable fragment is necessarily Turing-incomplete,
and more specifically, it limits the programmer’s ability to
define and process data in common (inductively-defined) for-
mats like lists and numbers. In essence, when deciding which
features to support, we make a tradeoff between the expres-
siveness of the language and our ability to systematically
analyze programs in that language. The Ceptre implementation
described in this paper supports more expressiveness at the
cost of decidable analysis, but it is possible that in the future

11

we will implement decision procedures for the fragments of
the language that support it.

B. Human Subjects Evaluation of the Ceptre Editor

We conducted a formative study, described in depth in
previous work [8], to understand how well the web-based
programming environment for Ceptre described in Section IV
supports learners who are new to Ceptre in understanding and
building on examples. We briefly summarize the method and
results of this study here as evidence of Ceptre’s usability.

We recruited 8 participants without requiring any prior
programming or logic experience. In practice, all participants
had some prior programming experience (though some were
novices), but most had no formal logic training. Partici-
pants completed a brief, 15 minute guided tutorial based
on the “Blocks World” domain common in symbolic AI
research [59], in which a robot arm can pick up and place
stackable blocks. We gave participants a guided tutorial in
which they created the block type, the “on” predicate, and
first rule (for picking up a block). We then asked them to
complete the rest of the model on their own. Following a
think-aloud protocol [68], we asked participants to extend
the tutorial program several times while talking through their
thought process as they worked. The three program extension
tasks were to add (1) a second robot arm, (2) an additional
block, and (3) a termination condition for the program.

We collected the programs authored by participants, the
amount of time it took them to complete each task, and
both screen and audio recordings (later transcribed) of their
think-aloud narration. We found that participants unanimously
succeeded in completing the blocks world tutorial in the time
given (15 minutes), and that the majority of the participants
(7 out of 8), were able to complete each of the subsequent
extensions within 30 minutes. Participants’ behaviors with the
tool and think-aloud narration demonstrated that participants
understood both the logic of the program structure and the
semantics of the model: for example, several participants
experimented with the model by running tests without our
prompting them to. Additionally, over the course of partici-
pants’ engagement with the tool, the way that they described
Ceptre programs changed. For example, at first, participants
read the states and transitions between states directly from
the program, e.g. “on c a and clear c” and “pickup from
block c a left.” But as they continued running the program
and constructing extensions to the model, they began referring
to the program and its execution using the language of the
representation domain, e.g. “let’s pick up c with our left arm”
and “so c is on a, and c is clear.” The results of this study
support our hypothesis that the Ceptre language, supported
by the web-based editing environment, allows novice users
construct, understand, and modify a model after completing a
15-minute guided tutorial.

C. Applications

The first author originally developed Ceptre as a Ph.D. thesis
project [39], and it has since been used in several published

projects within their own lab, such as character simulation-
based narrative generation, modeling the structure of phatic
conversation [48], and generating quests in Minecraft [2].
The project of specifying games using multiset rewrite rules
has also had indirect influence on other projects, including
the Cygnus game definition language underlying the Gemini
game generation engine [65], the Puzzlescript language for
writing 2D tile-based puzzle games [32] (which itself has been
used in game generation and modeling research [35], [41]),
Microsoft’s TextWorld system [13] for designing and evalu-
ating reinforcement learning algorithms for understanding of
virtual worlds, and a natural language interface developed for
a Wesleyan University honors thesis [50].

Finally, we speculate that Ceptre would make a compelling
tool to support many applications of general interest within
computational game design support as future research projects.
These include authoring rule-based AI systems, as a simpler
alternative to reactive planning-style systems (e.g. ABL [42])
or Rete rules [46]; interactive simulations to support com-
plex systems understanding and informal science learning, as
has been achieved with visual programming environments in
NetLogo [67] and AgentSheets [56] (see also related work
on modeling biological systems with multiset rewriting [3]);
as a Game Description Language for tuning game designs
based on formally-defined properties like balance and drama,
as in Cameron Browne’s work [6]; formal reasoning about
play traces, as in Playspecs [52]; and formal reasoning about
progressions and branching narratives, as in the “scenario
validation” problem described by Dong et al. [14].

VI. DISCUSSION

The design of Ceptre represents an effort to follow certain
language design design principles in order to achieve a way of
expressing game mechanics with minimal cognitive overhead.
We now discuss the principles that we believe have made this
project a success, as well as limitations of adhering to these
principles as design constraints. We put forth these design
principles as an example that others may follow if they wish
to replicate similar results in other language design projects.

1) Language Minimalism: Multiset rewriting fundamen-
tally consists of just two constructs, the multiset (joining
together predicates on either side of a rule) and the rewrite rule.
The Ceptre language adds to this framework conservatively,
introducing user-defined types, typed predicate declarations,
and (in the full command-line version) Prolog-style relational
definitions and stages. These 5-6 ideas are all that is necessary
to understand for a beginner to get started with the formalism,
yet it is also all one needs to build up rich and complex
simulations.

Language minimalism as a concept is not just about the
number of language constructs, but also how easy it is to for-
mally describe their operational semantics, i.e. how a program
that uses them will behave when it is run. This paper provides
the formal semantics of the language in order to demonstrate
that it is possible to describe the meaning of each language
construct concisely and with simple mathematical machinery.
We believe that this paper is the first in the space of game

12

modeling (or game definition) languages to do so, but we hope
we are not the last!

2) Genre-Agnostic Extensibility: Unlike game description
languages like VGDL and PuzzleScript, Ceptre does not
assume a specific underlying set of game constructs or opera-
tional logics specific to particular game genres (e.g. collision,
enemies, tile grids, spatial movement), or indeed even specific
to games. All of these concepts can be encoded by the
programmer, but there are no built-in assumptions about their
meaning.

We see this property of generality as a strength in the
sense that Ceptre permits game designers to think exper-
imentally and flexibly about what a game can contain or
represent: since Ceptre can model cryptographic protocols
and ecological systems, for example, it is easier to use it
to imagine and prototype games about decoding encrypted
messages or healing disrupted ecosystems. It also makes it
possible to combine, compare, and remix games that use
different operational logics, since it provides a common basis
for encoding all of them. These use cases are demonstrated by
the myriad corresponding examples in the Ceptre code base
repository, many of which are documented in publications.

Of course, generality can also be seen as a weakness,
since genre- and operational logic-specificity enables specific
tooling (such as visual rendering) that leans on the assumptions
of those logics to provide designers with visualizations and
reasoning modes specific to, e.g., tile-based puzzle games or
collisions in 2D space. However, we think it is possible to
have one’s cake an eat it, too: an avenue of ongoing work
for Ceptre is to design a puzzle game subset (collection of
predicate definitions and rule templates) and corresponding
visualization and testing tools for this subset.

3) Limitations and Tradeoffs: As discussed briefly in Sec-
tion V-A, the preservation of certain formal properties, like
decidability of reachability from one state to another, is in ten-
sion with the expressiveness of the language used to describe
that program, like the usage of non-finite data structures (e.g.
natural numbers). Ceptre’s design chooses to support more
expressivity in the case of its data structure language, but
on the other hand, it limits expressivity in the rule language
(e.g. by not supporting negation or rule prioritization) in order
to support other formal properties, like compositionality. We
believe that reasonable language designers can make different
decisions about each of these tradeoffs, but it is important to
understand the consequences of these decisions. Within Cep-
tre’s implementation, we make different choices for different
language fragments: the “pure” multiset rewriting fragment of
the language has limited expressiveness, but high amenability
to analysis; adding stages affords more expressiveness at the
expense of amenability to formal analysis. Within a stage, we
can reason about every rule set compositionally, but staged
programs as a whole sacrifice compositionality in the interest
of expressive power.

VII. CONCLUSION

With this paper, we contribute a tutorial explanation of
multiset rewriting as a reproducible formalism in which ob-
jects and conditions in games can be represented as multisets

of first-order logic predicates and actions that modify these
multisets. We also contribute a technical description of Ceptre,
a programming language that implements this formalism, and
its web-based structure editor, which allows non-expert users
to express complex procedural ideas in this formalism without
struggling with unfamiliar syntax. Ceptre has been and can
be used to rapidly prototype and analyze a wide variety of
games and non-game systems, facilitated by its minimalism
as a language and formal properties like compositionality. In
the long term, we hope to see multiset rewriting adopted in
many programming languages and contexts, similar to context-
free string grammars and cellular automata, with diverse
ecosystems of tools built atop it to facilitate interdisciplinary
community-building and cross-domain procedural literacy.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1755922. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Amal Ahmed. Compositional compiler verification for a multi-language
world. In 1st International Conference on Formal Structures for
Computation and Deduction (FSCD 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[2] Ryan Alexander and Chris Martens. Deriving quests from open world
mechanics. In Proceedings of the 12th International Conference on the
Foundations of Digital Games, pages 1–7, 2017.

[3] Stefano Bistarelli, Iliano Cervesato, Gabriele Lenzini, Roberto
Marangoni, and Fabio Martinelli. On representing biological systems
through multiset rewriting. In International Conference on Computer
Aided Systems Theory, pages 415–426. Springer, 2003.

[4] Pierre Boutillier, Mutaamba Maasha, Xing Li, Hector F Medina-Abarca,
Jean Krivine, Jérôme Feret, Ioana Cristescu, Angus G Forbes, and Walter
Fontana. The Kappa platform for rule-based modeling. Bioinformatics,
34(13):i583–i592, 06 2018.

[5] Marco Bozzano and Giorgio Delzanno. Automatic verification of secrecy
properties for linear logic specifications of cryptographic protocols.
Journal of Symbolic Computation, 38(5):1375–1415, 2004.

[6] Cameron Browne and Frederic Maire. Evolutionary game design. IEEE
Transactions on Computational Intelligence and AI in Games, 2(1):1–
16, 2010.

[7] Cameron Browne, Dennis J. N. J. Soemers, Eric Piette, Matthew
Stephenson, and Walter Crist. Ludi language reference. Online at
https://ludii.games/downloads/LudiiLanguageReference.pdf, 2021.

[8] Alexander Card and Chris Martens. The ceptre editor: A structure editor
for rule-based system simulation. In 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 133–137.
IEEE, 2019.

[9] Iliano Cervesato and Frank Pfenning. A linear logical framework.
Information and computation, 179(1):19–75, 2002.

[10] Iliano Cervesato, Frank Pfenning, David Walker, and Kevin Watkins. A
concurrent logical framework ii: Examples and applications. Technical
report, CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF
COMPUTER SCIENCE, 2003.

[11] Kaustuv Chaudhuri and Joëlle Despeyroux. A hybrid linear logic for
constrained transition systems with applications to molecular biology.
arXiv preprint arXiv:1310.4310, 2013.

[12] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martı-Oliet, José Meseguer, and José F Quesada. Maude: Specification
and programming in rewriting logic. Theoretical Computer Science,
285(2):187–243, 2002.

[13] Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian
Barnes, Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, et al. Textworld: A learning environment for text-
based games. In Workshop on Computer Games, pages 41–75. Springer,
2018.

13

[14] Kim Dung Dang, Ronan Champagnat, and Michel Augeraud. Modeling
of interactive storytelling and validation of scenario by means of
linear logic. In Joint International Conference on Interactive Digital
Storytelling, pages 153–164. Springer, 2010.

[15] Henry DeYoung and Carsten Schürmann. Linear logical voting proto-
cols. In International Conference on E-Voting and Identity, pages 53–70.
Springer, 2011.

[16] Joris Dormans. Simulating mechanics to study emergence in games. In
Workshops at the Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2011.

[17] Marc Ebner, John Levine, Simon M Lucas, Tom Schaul, Tommy
Thompson, and Julian Togelius. Towards a video game description
language. Artificial and Computational Intelligence in Games (Dagstuhl
Follow-Ups), 2013.

[18] Javier Esparza and Mogens Nielsen. Decidability issues for petri nets.
BRICS Report Series, 1(8), 1994.

[19] Ian Foster. Compositional parallel programming languages. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 18(4):454–
476, 1996.

[20] Michael Genesereth, Nathaniel Love, and Barney Pell. General game
playing: Overview of the aaai competition. AI magazine, 26(2):62–62,
2005.

[21] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ash-
win Ram, Manuela Veloso, Daniel Weld, and David Wilkins. Pddl: The
planning domain definition language. Technical report, Yale Center for
Computational Vision and Control, 1998.

[22] Michael Cerny Green, Ahmed Khalifa, Gabriella AB Barros, Tiago
Machado, Andy Nealen, and Julian Togelius. Atdelfi: automatically
designing legible, full instructions for games. In Proceedings of the
13th International Conference on the Foundations of Digital Games,
pages 1–10, 2018.

[23] Michel Henri Théodore Hack. Decidability questions for Petri Nets.
PhD thesis, Massachusetts Institute of Technology, 1976.

[24] Robert Harper and Daniel R Licata. Mechanizing metatheory in a logical
framework. Journal of functional programming, 17(4-5):613–673, 2007.

[25] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise.
An introduction to the planning domain definition language. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 13(2):1–187,
2019.

[26] Theo MV Janssen and Barbara H Partee. Compositionality. In Handbook
of logic and language, pages 417–473. Elsevier, 1997.

[27] Caitlin Kelleher, Dennis Cosgrove, David Culyba, Clifton Forlines, Jason
Pratt, and Randy Pausch. Alice2: programming without syntax errors.
User Interface Software and Technology, 01 2002.

[28] Ahmed Khalifa, Diego Perez-Liebana, Simon M Lucas, and Julian
Togelius. General video game level generation. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016, pages 253–
259, 2016.

[29] Athar Kharal, Mansoor H. Alshehri, Nasser Bin Turki, and Faisal Z
Duraihem. Generalized mapping for multiset rewriting systems. Soft
Computing, 25(17):11439–11448, 2021.

[30] Paul Klint and Riemer Van Rozen. Micro-machinations. In International
Conference on Software Language Engineering, pages 36–55. Springer,
2013.

[31] Michael Kölling. The greenfoot programming environment. Trans.
Comput. Educ., 10(4):14:1–14:21, November 2010.

[32] Stephen Lavelle. Puzzlescript. Online at https://www.puzzlescript.net.
[33] Matt Leacock. Pandemic. Board game published by Z-Man Games,

2003.
[34] John Levine, Clare Bates Congdon, Marc Ebner, Graham Kendall, Si-

mon M Lucas, Risto Miikkulainen, Tom Schaul, and Tommy Thompson.
General video game playing. Artificial and Computational Intelligence
in Games (Dagstuhl Follow-Ups), 2013.

[35] Chong-U Lim and D Fox Harrell. An approach to general videogame
evaluation and automatic generation using a description language. In
2014 IEEE Conference on Computational Intelligence and Games, pages
1–8. IEEE, 2014.

[36] Stencyl LLC. Gamemaker. Online at https://www.stencyl.com/.
[37] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and

Evelyn Eastmond. The scratch programming language and environment.
ACM Transactions on Computing Education (TOCE), 10(4):16, 2010.

[38] Chris Martens. Ceptre: A language for modeling generative interactive
systems. In Eleventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 2015.

[39] Chris Martens. Programming interactive worlds with linear logic. PhD
thesis, Carnegie Mellon University Pittsburgh, PA, 2015.

[40] Chris Martens, Joao F Ferreira, Anne-Gwenn Bosser, and Marc Cavazza.
Generative story worlds as linear logic programs. In Seventh Intelligent
Narrative Technologies Workshop, 2014.

[41] Chris Martens, Aaron Williams, Ryan S Alexander, and Chinmaya
Dabral. Generating puzzle progressions to study mental model matching.
In AIIDE Workshops, 2018.

[42] Michael Mateas and Andrew Stern. A behavior language for story-based
believable agents. IEEE Intelligent Systems, 17(4):39–47, 2002.

[43] Microsoft Research. Kodu. Online at https://www.microsoft.com/en-
us/research/project/kodu/.

[44] Dale Miller. A multiple-conclusion meta-logic. In Proceedings Ninth
Annual IEEE Symposium on Logic in Computer Science, pages 272–281.
IEEE, 1994.

[45] Philip Miller, John Pane, Glenn Meter, and Scott Vorthmann. Evolution
of novice programming environments: The structure editors of carnegie
mellon university. Interactive Learning Environments, 4(2):140–158,
1994.

[46] Ian Millington and John Funge. Artificial intelligence for games. CRC
Press, 2018.

[47] Mojang. Minecraft. Online at https://www.mojang.com/games/, 2011.
[48] Hannah Morrison and Chris Martens. “how was your weekend?” a

generative model of phatic conversation. In Proceedings of the 12th
International Conference on the Foundations of Digital Games, pages
1–7, 2017.

[49] Maxwell Nye, Armando Solar-Lezama, Josh Tenenbaum, and Bren-
den M Lake. Learning compositional rules via neural program synthesis.
Advances in Neural Information Processing Systems, 33:10832–10842,
2020.

[50] Samantha Ong. Talking to ceptre: A natural language interface. Wesleyan
University Honors Theses, 2018.

[51] Jon Orwant. EGGG: The Extensible Graphical Game Generator. PhD
thesis, Massachusetts Institute of Technology, 2000.

[52] Joseph Osborn, Ben Samuel, Michael Mateas, and Noah Wardrip-Fruin.
Playspecs: Regular expressions for game play traces. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 11, pages 170–176, 2015.

[53] Joseph Carter Osborn, April Grow, and Michael Mateas. Modular
computational critics for games. In Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference, 2013.

[54] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom
Schaul, Simon M Lucas, Adrien Couëtoux, Jerry Lee, Chong-U Lim, and
Tommy Thompson. The 2014 general video game playing competition.
IEEE Transactions on Computational Intelligence and AI in Games,
8(3):229–243, 2015.

[55] Peter Raulefs, J Siekmann, Peter Szabó, and E Unvericht. A short survey
on the state of the art in matching and unification problems. ACM Sigsam
Bulletin, 13(2):14–20, 1979.

[56] Alexander Repenning, Andri Ioannidou, and John Zola. Agentsheets:
End-user programmable simulations. Journal of Artificial Societies and
Social Simulation, 3(3):351–358, 2000.

[57] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, Zachary
Tatlock, et al. Qed at large: A survey of engineering of formally verified
software. Foundations and Trends® in Programming Languages, 5(2-
3):102–281, 2019.

[58] Grigore Rosu. K: a rewrite-based framework for modular language
design, semantics, analysis and implementation—version 2. Technical
report, University of Illinois at Urbana-Champaign, 2006.

[59] Stuart Russell and Peter Norvig. Artificial intelligence: a modern
approach. Pearson Education, Inc, 2003.

[60] Anders Schack-Nielsen and Carsten Schürmann. Celf–a logical frame-
work for deductive and concurrent systems (system description). In
International Joint Conference on Automated Reasoning, pages 320–
326. Springer, 2008.

[61] Tom Schaul. A video game description language for model-based
or interactive learning. In 2013 IEEE Conference on Computational
Inteligence in Games (CIG), pages 1–8. IEEE, 2013.

[62] Adam M Smith, Mark J Nelson, and Michael Mateas. Computational
support for play testing game sketches. In Proceedings of the Fifth
Artificial Intelligence and Interactive Digital Entertainment Conference,
2009.

[63] Adam M Smith, Mark J Nelson, and Michael Mateas. Ludocore: A
logical game engine for modeling videogames. In Proceedings of the
2010 IEEE Conference on Computational Intelligence and Games, pages
91–98. IEEE, 2010.

[64] Adam Summerville, Chris Martens, Sarah Harmon, Michael Mateas,
Joseph Osborn, Noah Wardrip-Fruin, and Arnav Jhala. From mechanics
to meaning. IEEE Transactions on Games, 11(1):69–78, 2017.

14

[65] Adam Summerville, Chris Martens, Ben Samuel, Joseph Osborn, Noah
Wardrip-Fruin, and Michael Mateas. Gemini: Bidirectional generation
and analysis of games via asp. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, volume 14,
2018.

[66] Michael Thielscher. Gdl-iii: A description language for epistemic
general game playing. In The IJCAI-16 workshop on general game
playing, page 31, 2017.

[67] Seth Tisue and Uri Wilensky. Netlogo: A simple environment for
modeling complexity. In International conference on complex systems,
volume 21, pages 16–21. Boston, MA, 2004.

[68] Maarten Van Someren, Yvonne F Barnard, and J Sandberg. The think
aloud method: a practical approach to modelling cognitive. London:
AcademicPress, 11, 1994.

[69] Noah Wardrip-Fruin and Michael Mateas. Defining operational logics.
In DiGRA ཅ - Proceedings of the 2009 DiGRA International
Conference: Breaking New Ground: Innovation in Games, Play, Practice
and Theory, volume 5, September 2009.

[70] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A
concurrent logical framework i: Judgments and properties. Technical
report, Carnegie Mellon University, 2003.

[71] David Weintrop and Uri Wilensky. Comparing block-based and text-
based programming in high school computer science classrooms. ACM
Trans. Comput. Educ., 18(1):3:1–3:25, October 2017.

[72] Michael Winikoff and James Harland. Implementing the linear logic
programming language lygon. In ILPS, pages 66–80. Citeseer, 1995.

[73] YoYo Games and Mark Overmars. GameMaker Studio. Online at
https://www.yoyogames.com/en/gamemaker.

	Introduction
	Related Work
	Game Description Languages
	Multiset Rewriting- and Linear Logic-Based Modeling

	Modeling Game Mechanics with Multiset Rewrite Rules
	Game States as Multisets
	Game Mechanics as Multiset Rewrite Rules
	Game Actions as Transitions
	Gameplay as Causal Execution Trace
	Term Quantification
	Substitution

	The Ceptre Language
	The Ceptre Editor
	Game States as Multisets
	Declaring Type and Term Constants
	Game Mechanics as Multiset Rewrite Rules
	Execution
	Stages
	Implementation

	Evaluating Ceptre's Usability and Usefulness
	Formal Properties
	Compositionality
	Decidability of Reachability

	Human Subjects Evaluation of the Ceptre Editor
	Applications

	Discussion
	Language Minimalism
	Genre-Agnostic Extensibility
	Limitations and Tradeoffs

	Conclusion
	References

