
Synthesizing Chess Tactics from Player Games

Abhijeet Krishnan, Chris Martens
North Carolina State University

Venture IV, 1730 Varsity Dr,
Raleigh, NC 27606

akrish13@ncsu.edu, martens@csc.ncsu.edu

Abstract

Competitive games admit a wide variety of player strategies
and emergent, domain-specific concepts that are not obvious
from an examination of their rules. Expert agents trained on
these games demonstrate many useful strategies, but these are
difficult for human players to understand and adopt. Algo-
rithmically revealing these strategies could help players de-
velop a better model for making decisions that lead to vic-
tories. This paper presents a method for the automatic dis-
covery of player-oriented strategies for chess. We present a
formal model for chess strategies, inspired by documented
chess tactics, that uses first-order logic clauses for represen-
tation. Our system uses inductive logic programming to learn
human-interpretable strategies for playing chess in the form
of our tactic model. Given minimal background knowledge
and training data drawn from real games, our system is able to
learn tactics that generalize to a large number of positions. We
show that these tactics cover a large number of real-world po-
sitions and produce moves that outperform a random player.

Introduction
Recent advancements in reinforcement learning (RL) have
produced agents capable of competing with and even
outperforming the best human experts at various games
like chess (Silver et al. 2018), Go (Silver et al. 2016),
Shogi (Li et al. 2020), Mahjong (Silver et al. 2018), Star-
Craft II (Vinyals et al. 2019) and Dota 2 (Berner et al. 2019).
These agents do not simply take advantage of faster reaction
times and calculation abilities, but are actually employing
new, better strategies that lead to more victories (DeepMind
2019). Borrowing from Jeanette Wing’s definition of com-
putational thinking (Wing 2008), these agents appear to have
better abstractions than human experts for the games they’re
trained to play.

Despite the existence of such agents in various compet-
itive games, we still see human competition continue to
thrive, with these agents leading to new ways of thinking
and a re-evaluation of long-held beliefs about the game (Nel-
son 2019). These discoveries have, so far, involved man-
ual or engine-assisted analysis of the games played by the
agents (Sadler and Regan 2019; Zhou 2018). If these agents
could explain their strategies and decision-making to human

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

players, we posit that it would help improve their (the human
players’) play.

Such chess-playing agents (chess engines) are used exten-
sively in game analysis (Smith 2004; Tukmakov 2020) and
tournament preparation (Andrei 2021). Expert chess play-
ers utilize engine move suggestions and evaluations to ana-
lyze new lines to play (PTI 2016). Most current engines use
a neural network-based model with many thousands of pa-
rameters trained using deep reinforcement learning (DRL)
in conjunction with a search algorithm to produce game
moves. Examples include Monte Carlo Tree Search in Al-
phaZero (Silver et al. 2016), Predictor+Upper Confidence
Bound tree search in Leela Chess Zero (Pascutto, Gian-Carlo
and Linscott, Gary 2019) or alpha-beta pruning in Stock-
fish 14 (Romstad, Costalba, and Kiiski 2021). However,
this is very different to how human chess players employ
pattern-recognition to produce moves (de Groot 1946; Con-
nors, Burns, and Campitelli 2011). Existing solutions to ex-
plaining chess moves use extensive domain knowledge (De-
codeChess 2022) or do not adequately explain individual
moves.

In this work, we present a model for a human-readable
chess strategy, inspired by documented chess tactics, for
playing chess. We also present a system that integrates a
modified inductive logic programming (ILP) engine with
novel metrics for learning these tactics. Our system can ex-
trapolate chess tactics from positions drawn from play traces
of human vs. human games. It requires no more domain
knowledge than the base rules of chess. We show that the
learned tactics generalize well to real-world chess positions
and produce moves that outperform a random player. We
discuss some limitations of our approach and conclude with
directions for future work.

Related Work
Strategy Synthesis A number of works attempt to learn
rule-based agents using evolutionary approaches to play
role-playing games like Neverwinter Nights (Spronck,
Sprinkhuizen-Kuyper, and Postma 2004), board games like
Checkers and Reversi (Benbassat and Sipper 2011), coop-
erative games like Hanabi (Canaan et al. 2018), platformers
like Mario (de Freitas, de Souza, and Bernardino 2018), and
real-time strategy games like µRTS (Mariño et al. 2021).
Partially-applicable strategies for puzzle games have been



learned using constraint satisfaction (Butler, Torlak, and
Popović 2017). Our model for chess tactics is learned us-
ing ILP, and incorporates domain knowledge of the concept
of a tactic in order to improve interpretability.

Chess Pattern Learning Chess has been called the
drosophilia1 of artificial intelligence (McCarthy 1990). It
has been a mainstay of AI research from the invention of the
digital computer (Claude 1950) to the neural network revo-
lution (Silver et al. 2018). Given the depth of experimenta-
tion with AI techniques for chess, it is not surprising that the
idea of using patterns to guide a computer to play chess is
not new. Patterns have been used to suggest moves and guide
playing strategies in middle-game positions (Berliner 1975;
Pitrat 1977; Wilkins 1979) and endgames (Huberman 1968;
Bramer 1977; Bratko 1982). Levinson and Snyder (1991)
used weighted patterns in their Morph system as an evalu-
ation function to guide playing strategy. Very recent work
has attempted to directly probe neural network engines to
test for the presence of human concepts (McGrath et al.
2021). Morales (1992) developed the PAL system to learn
first-order patterns in chess using ILP. We build upon this
work by taking advantage of modern chess engines to serve
as the reference evaluation function to select learned patterns
instead of hand-crafted heuristics.

Background
Chess Tactics
Tactics in chess are maneuvers that take advantage of short-
term opportunities (Seirawan 2005, Chapter 1). They are
a move or series of moves that bring about an immediate
advantage for the player. They are identified by motifs—
positional patterns that indicate whether a tactic might ex-
ist in the given position. An example of a tactic is the fork,
where a piece simultaneously attacks two opponent pieces
at once (see Figure 1).

Inductive Logic Programming
Inductive logic programming (ILP) is a form of symbolic
machine learning where the goal is to induce a hypothesis
(a set of logical rules) that generalises given training exam-
ples. It can learn human-readable hypotheses from smaller
amounts of data than neural network-based models (Crop-
per and Dumančić 2020).

An ILP problem is specified by three sets of Horn
clauses—

• B, the background knowledge,
• E+, the set of positive examples of the concept, and
• E−, the set of negative examples of the concept.

The ILP problem is to induce a hypothesis H ∈ H (an ap-
propriately chosen hypothesis space) that, in combination
with the background knowledge, entails all the positive ex-
amples and none of the negative examples. Formally, this

1fruit fly; easily bred and thus extensively used in genetics re-
search

2https://lichess.org/training/4pEpj

Figure 1: An example of a fork from a Lichess puzzle2. The
white knight on d5 simultaneously checks the opponent king
on f6 and attacks the rook on c7.

can be written as -
∀e ∈ E+, H ∪B |= e (i.e., H is complete)

∀e ∈ E−, H ∪B ̸|= e (i.e., H is consistent)
To make the ILP problem more concrete, we provide a toy

example.
E+ and E− contain positive and negative examples of

the target knight_move relation respectively. B contains
background knowledge i.e., clauses which might be useful
in inducing a hypothesis for knight_move.

E+ =


knight_move(d4,c6).
knight_move(d4,e6).
knight_move(d4,b5).
knight_move(d4,f5).


E− =


knight_move(d4,d5).
knight_move(d4,b6).
knight_move(d4,e1).
knight_move(d4,h7).


B =


l_move(d4,c6).
l_move(d4,e6).
l_move(d4,b5).
l_move(d4,f5).


From this information, we could induce a hypothesis for

knight_move as -

knight_move(From,To) : − l_move(From,To).

Popper
Popper is an ILP system that implements an approach called
learning from failures (Cropper and Morel 2021). It operates



in three stages: generate, test and constrain. Given an ILP
problem, it generates a candidate solution, tests it against ex-
amples in the training set, and formulates constraints based
on the outcome of failed examples to cut down the solu-
tion space. These three stages are repeated until a solution
is found. Popper also allows for specifying hypothesis bi-
ases to further constrain the solution space based on domain
knowledge of the problem being solved.

Popper uses two general types of constraints - gen-
eralization and specialization. Assume an ILP problem
⟨E+, E−, B⟩ and a generated hypothesis H . If H entails a
negative example, then H is too general and so we can prune
generalisations of it. Similarly, if H does not entail a positive
example, it is too specific, and we can prune specialisations
of it. The notions of the generalisation and specialisation of a
hypothesis are defined in terms of clausal subsumption, and
we refer readers to the original paper for formal definitions
of these terms. Popper supports providing a language bias
to influence the hypothesis space.

Methodology
In this section, we formalize the learning problem of strategy
synthesis for games, and describe the problem of learning
chess tactics as an instance of strategy synthesis for chess.
We describe our formal model for chess tactics using first-
order logic, and describe our method for learning them using
ILP. Finally, we describe the metrics that we use to measure
a tactic’s utility as part of our learning method.

Strategy Synthesis
Let us be given a game environment G modeled as a finite,
episodic Markov decision process ⟨S,A(s),P,R, γ⟩, where
—
• S is the finite set of legal game states reachable from the

start state s0,
• A(s) is the set of legal actions that can be taken in a state
s ∈ S,

• P is the state transition function that models the game’s
dynamics,

• R is the reward function describing the game’s win con-
ditions, and

• γ is a discount factor between [0, 1]

We define a strategy ς (sigma) for G at timestep t as a
probability distribution over the available actions in a state,
for a subset of states in the state space. The states for which
ς is defined are termed as the states for which the strategy
is applicable, and is given by the applicability function Aς :
S → {0, 1}.

ς(a|s) .
= P[At = a|St = s],∀s ∈ Aς , a ∈ A(s) (1)

The definition of a strategy in Equation 1 borrows from
the notion of a policy as used in RL (Sutton and Barto 2018)
as well as game-theoretic notions of a strategy (Boros et al.
2012). Intuitively, a strategy describes a pattern or feature of
a game state that comes up often in regular game play and
that tends to influence the actions taken in states with that
feature.

tactic(Position, From, To)←
feature_1(· · · ),
feature_2(· · · ),
...
feature_n(· · · )

Figure 2: Our tactic model expressed in Prolog pseudocode.
Every feature_i clause is a rule defined in the predicate
vocabulary.

Strategy Synthesis for Chess
Our strategy model for chess uses the concept of a chess tac-
tic. Formally, we define our strategy model for chess (here-
after referred to as a tactic) as a first-order logic rule ex-
pressed in Prolog using a particular predicate vocabulary. As
seen in Figure 2, the rule head of the tactic consists of the
variables Position, From and To. Position describes
the input state, also expressed in first-order logic using our
predicate vocabulary. From and To describe the output ac-
tion, namely, the move which begins from the square From
and ends on the square To. This replicates the long algebraic
notation for moves used in the Universal Chess Interface
(UCI) protocol, an open communication protocol allowing
chess engines to interact with user interfaces (Kahlen 2004).

If the tactic is provided as a query to the Prolog inter-
preter with a grounded instance of Position and non-
ground move variables, it will attempt to unify the latter
with ground moves (Sterling and Shapiro 1994). The vari-
able binding(s) (i.e., moves) it finds are treated as the action
distribution defined on the state, with every found move be-
ing equi-probable, and every other move accorded a proba-
bility of 0.

Our usage of first-order logic to model chess tactics is mo-
tivated by the following reasons —

1. Chess tactics are an important concept that human play-
ers use to think about chess (Szabo 1984) and are useful
in chess education (Gobet and Jansen 2006).

2. First-order logic has been extensively used to model
chess patterns (ref. Related Work).

3. Logic rules are commonly acknowledged to be inter-
pretable and have a long history of research (Zhang et al.
2021).

ILP for Tactic Learning
Given our tactic model being a first-order logic rule, we
model the problem of learning it as an ILP problem. We
use training examples drawn from real games played by hu-
mans online. Each training example is a ⟨position,move⟩
tuple, where position is the board state converted to first-
order logic using a hand-engineered predicate vocabulary,
and move is the move made in that position, also represented
in first-order logic. We define this predicate vocabulary in
the background knowledge, along with predicates represent-
ing the board state and relationships between squares. Our
choice of predicates is motivated by the ability to use them
to express tactics from chess literature, like the pin or the



fork. We also introduce a foreign predicate implemented ex-
ternally to represent a legal move. See Figure 3 for an ex-
pression of the fork tactic from chess literature in this model.
Our background knowledge design borrows from that of the
PAL system (Morales 1992). We refer readers to the Ap-
pendix for the complete list of predicates in our background
knowledge.

Given this formulation of the tactic-learning problem as
an ILP problem, we select Popper as the ILP system to learn
tactics with. Popper searches for the hypothesis that max-
imises the F1 score when evaluated against the examples.
However, we wish to learn multiple tactics that might not
cover the entire example set. Our proposed system supports
learning multiple tactics. We do so by modifying the gen-
erate and constrain stages of the Popper ILP system in the
following ways —

• generate: modified to only generate tactics that produce
legal moves

• constrain: prevent further specializations of a tactic that
does not match any position in the training set from being
generated

fork(Position,From,To)←
make_move(From, To, Position, NewPosition),
attacks(To, Square1, NewPosition),
attacks(To, Square2, NewPosition),
different_pos(Square1, Square2).

Figure 3: An interpretation of the fork tactic from the
chess literature using our predicate vocabulary. The first
attacks clause states that the piece at To attacks the op-
posing piece at Square1 in the current position.

Metrics
The tactics learned by our system are merely guaranteed to
match with at least one position in the training set. We need
additional signals that tell us how generally applicable a tac-
tic might be, and how useful the moves it produces are. To
do so, we introduce two metrics — coverage and divergence.

Coverage A tactic ς’s coverage for a set of positions P is
calculated as —

PA
.
= P ∩Aς (2)

Coverage(ς, P )
.
=
|PA|
|P |

(3)

Coverage is the fraction of positions in a given set to
which the tactic is applicable. If P is representative of po-
sitions encountered in games, coverage is a useful measure
of how likely it is that the tactic can be used to make moves
in games. A low coverage value indicates that the tactic is
situational, whereas a high coverage value indicates that the
tactic is general.

Divergence To measure the quality of moves suggested
by a tactic, we extend a metric previously used to anal-
yse world chess champions (Guid and Bratko 2006, 2011;
Romero 2019). A chess engine E usually provides a posi-
tion evaluation function vE(s). From this, we can obtain a
move evaluation function qE(s, a) as follows —

qE(s, a) =
∑
s′,r

P(s′, r|s, a)[r + vE(s
′)] (4)

= vE(s
′), s′ is non-terminal (5)

Equation 5 follows from 4 since rewards in chess are 0 for
non-terminal states, γ = 1, and chess rules are deterministic.
A chess engine could evaluate a position to be a ‘Mate in
X’ rather than a numerical score. In this case, we assign an
arbitrary large value to the evaluation.

Given two moves a1, a2 made in a position s, we can cal-
culate their difference dE(s, a1, a2) as —

dE(s, a1, a2)
.
=| qE(s, a1)− qE(s, a2) | (6)

We can now define the divergence of a tactic from a set
of examples P as the average difference between the moves
suggested by the tactic and the ground truth move —

DivergenceE(ς(·), P )
.
=

1

|PA|
∑

(s,a1)∈PA

∑
a2∈A(s)

ς(a2|s)dE(s, a1, a2) (7)

Divergence of a tactic from the ground truth is low and
close to 0 when its suggestions are similar in engine evalu-
ation to the ground truth moves, and takes on large values
when it differs significantly. Divergence is a useful metric to
measure how closely a tactic approximates a reference pol-
icy.

Evaluation
In this section, we describe the procedure used to evaluate
the tactics produced by our learning system. We describe
our testing and training datasets, how we generate the tactics
used for evaluation, and the metrics we use to measure the
performance of the learned tactics.

Dataset
To source our ⟨position,move⟩ training examples, we use a
collection of games played by human players on the Internet
chess server Lichess3. Specifically, we use the January 2013
archive of standard (played with regular chess rules) rated
(users stand to gain or lose rating points based on the out-
come) games played on the website (lichess.org 2021). The
archive consists of 121,332 games, with players of ELO rat-
ing 1601 ± 289 (new players start at 1500 (Lichess 2021)).
To generate N examples, we randomly sample N games
and select a single random position from that game, along
with the move made in that position. We select positions
beginning from move 12 (Guid and Bratko 2006; Romero

3https://lichess.org/



Figure 4: Divergence histogram for T evaluated using Maia-
1600

2019), and exclude games which did not end normally or
by time forfeit. Using this procedure, we generated a dataset
of 100 examples which were split into training/validation in
a 90:10 ratio. We found that using more training examples
did not produce new tactics since the hypothesis space was
exhausted. For testing, we use the February 2013 archive of
123,961 games and ELO rating 1595 ± 298 to generate 10
testing examples.

Training
Using the bias settings provided by Popper, we limit the size
of the learnable hypotheses to a maximum of one clause, five
variables and five body literals. Empirically, we find that this
strikes a good balance between learning time and quality of
learned tactics. We run our proposed method until no more
solutions are found. We obtain a list T of 837 tactics.

Performance Metrics
To measure the performance of our tactics on the test data,
we use the metrics of accuracy, the percentage of moves
suggested by a tactic that matches the move in the test data,
and coverage and divergence, which are defined in Equa-
tions 3 and 7 respectively. To provide the evaluation func-
tion for calculating divergence, we use the engines Maia-
1600 and Stockfish 14. The Maia-1600 engine has been
trained on games played by players of ELO rating between
[1600 − 1699] and has been shown to resemble human
moves (McIlroy-Young et al. 2020). Stockfish 14 is the win-
ner of the TCEC 2020 Championship (Haworth and Her-
nandez 2021) and is an extremely strong engine. We limit
the search depth of both engines to 1-ply to be comparable
to our tactic model. We report divergence using the unit of
centipawns (Cp), a widely accepted unit of measure used in
chess as a measure of advantage, and defined as 1/100 of a
pawn (Guid and Bratko 2017).

Results and Analysis
Based on the data obtained, we report the results for each
of accuracy, coverage and divergence as a histogram with

Figure 5: Divergence histogram for T evaluated using Stock-
fish 14

Figure 6: Coverage histogram for T

Figure 7: Accuracy histogram for T



20 buckets. Since we do not have a reference set of exist-
ing tactics expressed in our predicate vocabulary to compare
against, we choose to compare against the following base-
line tactics —
• random move tactic: makes a random legal move in a

given position, and is applicable to all positions
• ground move tactic: replicates the move made in the

ground truth example, and is applicable to all positions
• engine move tactic: makes the best move suggested by

an engine, and is applicable to all positions. We use two
engines - Stockfish 14 and Maia-1600.

From the coverage values in Figure 6, we see that all the
tactics learned by our system cover 30% - 60% of the test
set. We conclude that the tactics learned by our system are
moderately likely to be applicable to positions that arise in
real games.

From the accuracy histogram in Figure 7, we see the tac-
tics learned by our system are only marginally more accurate
at predicting moves in the test set than the random baseline.
Overall, the highest accuracy of a learned tactic in T is 42%
compared to the 10% accuracy of the random baseline.

From the divergence histogram for T calculated using
Maia-1600 (Figure 4), we see that Maia-1600 evaluates the
learned tactics as having greater divergence from ground
that the random baseline. However, from Figure 5, we see
that the stronger Stockfish 14 evaluates the same tactics as
having lower divergence from ground. We can conclude that
the learned tactics are better approximating Stockfish 14’s
policy as compared to Maia-1600’s policy.

Qualitative Analysis
We present three tactics learned by our system to further an-
alyze qualitatively.

f(Position,From,To)←
legal_move(From, To, Position),
attacks(From, Square1, Position),
behind(To, Square1, Square2, Position),
different_pos(Square1, Square2).

Figure 8: A learned tactic with low divergence from ground
as evaluated by Stockfish 14.

Lowest Divergence The tactic in Figure 8 was chosen
from those having the least divergence from ground as mea-
sured by Stockfish 14. It can be interpreted as follows -
if one of your pieces is attacking your opponent’s piece
(attacks(From, Square1, Position)), move it instead to
a square which puts it in line with two of your opponent’s
pieces (behind(To, Square1, Square2, Position)). To the
author’s knowledge, this does not represent an existing tac-
tical idea in chess.

Highest Accuracy The tactic in Figure 9 was chosen from
that having the highest accuracy. It can be interpreted as fol-
lows - if one of your pieces is attacking your opponent’s
piece (attacks(From, Square1, Position)), move it instead
to different square. This somewhat resembles the idea of a

f(Position,From,To)←
legal_move(From, To, Position),
attacks(From, Square1, Position),
different_pos(From, To),
different_pos(From, Square1).

Figure 9: A learned tactic with the highest accuracy.

tactical retreat in chess. It can be thought of as a more gen-
eral tactic than that in 8.

f(Position,From,To)←
legal_move(From, To, Position),
behind(From, To, Square1, Position),
behind(From, Square2, Square3, Position),
behind(From, Square3, Square2, Position),
behind(From, Square2, To, Position).

Figure 10: A learned tactic with meaningless variable
reshuffling.

Variable Reshuffling The tactic in Figure 10 represents
a possibility in the tactic hypothesis space that is merely a
permutation of the variables in the rule. It is difficult to in-
terpret this in terms of chess, and is very likely meaningless.
It points to opportunities to restrict the hypothesis space us-
ing language biases to prevent such tactics from being gen-
erated.

Discussion and Future Work
Since our system uses ILP as its learning method, it inher-
its many benefits and challenges associated with ILP. Our
learning system requires carefully selected language biases
in the form of background knowledge in order to learn effi-
ciently (Cropper and Dumančić 2020). Designing predicates
suitable to game-like domains will make searching for bet-
ter tactics more efficient. The learned tactics are also inter-
pretable (Muggleton et al. 2018), and can be added back into
the background knowledge to allow lifelong learning (Crop-
per and Tourret 2020). However, work needs to be done in
this area in the context of games.

Our tactics are able to beat a random baseline in produc-
ing moves similar to a beginner player. However, they still
have high divergence from player moves, have low accuracy
and do not suggest the same moves, indicating that they do
not yet adequately represent a human beginner player. Im-
proving the learning algorithm to penalize tactics which do
not match the ground truth moves could lead to better re-
sults.

Given that our tactics serve as an interpretable model of
human players, they could also be used to interpret chess
engines, and serve as a general technique for explainable AI.
However, further work is required to learn tactics of playing
strength comparable to top engines.

Conclusion
We have presented the problem of learning chess tactics in
the form of first-order logic rules from examples. We have



presented a learning method that uses ILP to learn these tac-
tics. We have evaluated this system and shown that the tac-
tics learned cover a large portion of the test set. Using the
metrics of divergence, we showed that they can approximate
a human beginner better than a random baseline. We dis-
cussed limitations of our method and concluded that while
it is promising, further work is required to learn tactics of
acceptable playing strength.

References
Andrei, M. 2021. A supercomputer helped set up the World
Chess Championship game. Accessed: 2021-10-27.
Benbassat, A.; and Sipper, M. 2011. Evolving board-game
players with genetic programming. In Proceedings of the
13th annual conference companion on Genetic and evolu-
tionary computation, 739–742.
Berliner, H. J. 1975. A representation and some mech-
anisms for a problem solving chess program. Technical
report, CARNEGIE-MELLON UNIV PITTSBURGH PA
DEPT OF COMPUTER SCIENCE.
Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; et al. 2019. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680.
Boros, E.; Elbassioni, K.; Gurvich, V.; and Makino, K. 2012.
On Nash equilibria and improvement cycles in pure po-
sitional strategies for Chess-like and Backgammon-like n-
person games. Discrete Mathematics, 312(4): 772–788.
Bramer, M. A. 1977. Representation of Knowledge for
Chess Endgames Towards a Self-Improving System. Ph.D.
thesis, Open University (United Kingdom).
Bratko, I. 1982. Knowledge-based problem-solving in AL3.
Machine intelligence, 10: 73–100.
Butler, E.; Torlak, E.; and Popović, Z. 2017. Synthesizing
interpretable strategies for solving puzzle games. In Pro-
ceedings of the 12th International Conference on the Foun-
dations of Digital Games, 1–10.
Canaan, R.; Shen, H.; Torrado, R.; Togelius, J.; Nealen, A.;
and Menzel, S. 2018. Evolving agents for the hanabi 2018
cig competition. In 2018 IEEE Conference on Computa-
tional Intelligence and Games (CIG), 1–8. IEEE.
Claude, E. S. 1950. Programming a Computer for Playing
Chess. Philosophical Magazine, Ser, 7(41): 314.
Connors, M. H.; Burns, B. D.; and Campitelli, G. 2011. Ex-
pertise in complex decision making: the role of search in
chess 70 years after de Groot. Cognitive science, 35(8):
1567–1579.
Cropper, A.; and Dumančić, S. 2020. Inductive logic
programming at 30: a new introduction. arXiv preprint
arXiv:2008.07912.
Cropper, A.; and Morel, R. 2021. Learning programs by
learning from failures. Machine Learning, 110(4): 801–856.
Cropper, A.; and Tourret, S. 2020. Logical reduction of
metarules. Machine Learning, 109(7): 1323–1369.

de Freitas, J. M.; de Souza, F. R.; and Bernardino, H. S.
2018. Evolving Controllers for Mario AI Using Grammar-
based Genetic Programming. In 2018 IEEE Congress on
Evolutionary Computation (CEC), 1–8. IEEE.
de Groot, A. D. 1946. Het denken van den schaker: een
experimenteel-psychologische studie. Noord-Hollandsche
Uitgevers Maatschappij Amsterdam.
DecodeChess. 2022. Chess Analysis, Powered by AI. De-
codeChess. https://decodechess.com/ (Accessed: 2022-05-
27).
DeepMind. 2019. AlphaStar: Mastering the real-time strat-
egy game StarCraft II. Accessed: 2022-09-21.
Gobet, F.; and Jansen, P. J. 2006. Training in chess: A sci-
entific approach. Education and chess.
Guid, M.; and Bratko, I. 2006. Computer analysis of world
chess champions. ICGA journal, 29(2): 65–73.
Guid, M.; and Bratko, I. 2011. Using heuristic-search based
engines for estimating human skill at chess. ICGA journal,
34(2): 71–81.
Guid, M.; and Bratko, I. 2017. Influence of search depth on
position evaluation. In Advances in computer games, 115–
126. Springer.
Haworth, G.; and Hernandez, N. 2021. The 20th Top Chess
Engine Championship, TCEC20. J. Int. Comput. Games As-
soc., 43(1): 62–73.
Huberman, B. J. 1968. A program to play chess end games.
65. Department of Computer Science, Stanford University.
Kahlen, S.-M. 2004. UCI protocol. Accessed: 2022-09-21.
Levinson, R.; and Snyder, R. 1991. Adaptive pattern-
oriented chess. In Machine Learning Proceedings 1991, 85–
89. Elsevier.
Li, J.; Koyamada, S.; Ye, Q.; Liu, G.; Wang, C.; Yang, R.;
Zhao, L.; Qin, T.; Liu, T.-Y.; and Hon, H.-W. 2020. Suphx:
Mastering mahjong with deep reinforcement learning. arXiv
preprint arXiv:2003.13590.
Lichess. 2021. Chess rating systems. Accessed: 2022-09-23.
lichess.org. 2021. lichess.org open database. https://
database.lichess.org/. Accessed: 2021-10-27.
Mariño, J. R.; Moraes, R. O.; Oliveira, T. C.; Toledo, C.; and
Lelis, L. H. 2021. Programmatic Strategies for Real-Time
Strategy Games. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, 381–389.
McCarthy, J. 1990. Chess as the Drosophila of AI. In Com-
puters, chess, and cognition, 227–237. Springer.
McGrath, T.; Kapishnikov, A.; Tomašev, N.; Pearce, A.;
Hassabis, D.; Kim, B.; Paquet, U.; and Kramnik, V.
2021. Acquisition of Chess Knowledge in AlphaZero.
arXiv:2111.09259 [cs, stat]. ArXiv: 2111.09259.
McIlroy-Young, R.; Sen, S.; Kleinberg, J.; and Anderson,
A. 2020. Aligning Superhuman AI with Human Behavior:
Chess as a Model System. In Proceedings of the 25th ACM
SIGKDD international conference on Knowledge discovery
and data mining.
Morales, E. 1992. First order induction of patterns in Chess.
Ph.D. thesis, PhD thesis, The Turing Institute-University of
Strathclyde.



Muggleton, S. H.; Schmid, U.; Zeller, C.; Tamaddoni-
Nezhad, A.; and Besold, T. 2018. Ultra-strong machine
learning: comprehensibility of programs learned with ILP.
Machine Learning, 107(7): 1119–1140.
Nelson, P. H. 2019. When Magnus met AlphaZero. New In
Chess, 2019(8): 2–10.
Pascutto, Gian-Carlo and Linscott, Gary. 2019. Leela Chess
Zero (v0.21.0).
Pitrat, J. 1977. A chess combination program which uses
plans. Artificial Intelligence, 8(3): 275–321.
PTI. 2016. World Chess Championship: Role of the ‘sec-
onds’.
Romero, O. 2019. Computer analysis of world chess cham-
pionship players. ICSEA 2019, 212.
Romstad, T.; Costalba, M.; and Kiiski, J. 2021. Stockfish
14.
Sadler, M.; and Regan, N. 2019. Game Changer. Alp-
haZero’s Groundbreaking Chess Strategies and the Promise
of AI. Alkmaar. The Netherlands. New in Chess.
Seirawan, Y. 2005. Winning chess tactics. Everyman Chess.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484–489.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140–1144.
Smith, R. 2004. Modern Chess Analysis. Gambit. ISBN
9781904600084.
Spronck, P.; Sprinkhuizen-Kuyper, I.; and Postma, E. 2004.
Online adaptation of game opponent AI with dynamic
scripting. International Journal of Intelligent Games and
Simulation, 3(1): 45–53.
Sterling, L.; and Shapiro, E. 1994. The Art of Prolog: Ad-
vanced Programming Techniques, 87–90. MIT Press, 2nd
edition.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Szabo, A. 1984. Computer chess tactics and strategy. Ph.D.
thesis, University of British Columbia.
Tukmakov, V. 2020. Modern Chess Formula - The Pow-
erful Impact of Engines. Thinkers Publishing. ISBN
9789492510815.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350–354.
Wilkins, D. E. 1979. Using patterns and plans to solve prob-
lems and control search. Stanford University.

Wing, J. M. 2008. Computational thinking and thinking
about computing. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ences, 366(1881): 3717–3725.
Zhang, Y.; Tiňo, P.; Leonardis, A.; and Tang, K. 2021. A
survey on neural network interpretability. IEEE Transac-
tions on Emerging Topics in Computational Intelligence.
Zhou, Y. 2018. Rethinking Opening Strategy: AlphaGo’s
Impact on Pro Play. CreateSpace, 1(36): 212.

Appendix
Background Knowledge Definitions
This appendix has the background knowledge definitions
used by our system.

• legal_move(From,To,Pos): Defines legal moves
of chess pieces. Dynamically added to the knowledge
base via an external script.

• square(Rank,File): Defines valid rank and file co-
ordinates of chess squares.

• to_coords(Name,Rank,File): Converts a square
Name to the corresponding rank and file coordinates.

• sq(Name): Defines valid square names.
• sameRow(X1,Y1,X2,Y2): The squares (X1, Y1) and
(X2, Y2) are on the same row.

• sameCol(X1,Y1,X2,Y2): The squares (X1, Y1) and
(X2, Y2) are on the same column.

• side(Side): Defines valid side names.
• other_side(Side, OtherSide): The sides Side

and OtherSide are opposites.
• piece(Piece): Defines valid piece names.
• sliding_piece(Piece): The piece Piece moves in

a straight line.
• contents(Side,Piece,X,Y): The piece of type

Piece and colour Side is located at the board coordinates
(X,Y ).

• move(FromX,FromY,ToX,ToY): Defines the move
of the piece located at (FromX,FromY) to (ToX,ToY).

• position(Pos): Defines a valid position.
• turn(Side,Pos): Asserts that it is Side’s turn in the

position Pos.
• kingside_castle(Side, Pos): Asserts that Side

can castle king-side in the position Pos.
• queenside_castle(Side, Pos): Asserts that

Side can castle queen-side in the position Pos.
• attacks(From,To,Pos): The piece at square From

attacks the opposing piece at To in the position Pos.
• different_pos(S1, S2): The squares S1 and S2

are different.
• piece_at(S,Pos,Side,Piece): Asserts that the

piece Piece of colour Side exists at square S in the posi-
tion Pos.



• behind(Front,Middle,Back,Pos): The piece
on the square Front is in line with the the pieces on
squares Middle and Back.

• make_move(From,To,Pos,NewPos): Performs
the actual movement of a piece changing the state
description.


