Generating Explorable Narrative Spaces with Answer Set Programming

Chinmaya Dabral

csdabral @ncsu.edu

Chris Martens

martens @csc.ncsu.edu

Computer Science Department
North Carolina State University
Raleigh, North Carolina

Abstract

Previous approaches to narrative generation have required
a new planner implementation for each set of constraints
deemed relevant to the narrative domain, each consisting of
thousands of lines of code and supporting one primary mode
of interaction: fully specifying a domain and problem, and
receiving a plan as output. We present a lightweight, flexible
narrative planner written with Answer Set Programming, de-
signed specifically to support constraint-based narrative gen-
eration, show how it generalizes previous approaches, and
show how it can be easily extended with notions of thematic
plot schema such as “betrayal.” Finally, we demonstrate how
the ASP model can be explored through interactive question
answering, where answers take the form of generated narra-
tives. In the long term, we intend this work to support under-
standing of complex rule systems through interactive explo-
ration.

Introduction

The need to understand complex rulesets pervade people’s
lives, including those governing board games and sports,
end-user software policies, the law defined by government,
product user manuals, and scientific theories. We posit that
explorability has a critical role to play in making sense of
such rule systems. Ideally, rulesets could be understood not
as static documents, but as changing, interactive worlds, in
which questions can be answered with specific examples,
hypotheses tested and refined, and the consequences of per-
tinent scenarios can be explored. Our overarching goal is to
realize this vision of explorable formal models, focusing on
privacy policies and regulations as a timely case study.
Narrative generation plays a key role in realizing this
vision. Humans have been shown time after time to make
better sense of complex information through stories, where
a progression of events over time with clear cause and ef-
fect relationships is depicted, than through unorganized col-
lections of facts (Bruner 1991; Gerrig and Wenzel 2015).
Therefore, narrative generation is a key competency that
such a system must demonstrate. Existing approaches based
on planning offer a promising path forward, due to their ex-
plicit world models that represent granular state change.

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, to incorporate the constraints of complex rule
systems and to support the varied modes of interaction envi-
sioned, we need a narrative generation system that is more
flexible and extensible than those available today. Past ap-
proaches have required developing a new planner implemen-
tation for each set of constraints deemed relevant to the nar-
rative domain (such as intention in IPOCL (Riedl and Young
2010) and conflict in Glaive (Ware and Young 2011)). Fur-
ther, they support primarily one mode of interaction: given
a planning domain (set of actions) and problem (initial and
goal scenario), generate a plan to reach the goal from the
initial state. The more general framework we propose sup-
ports multiple interaction modes, including partial domain
specification (to be filled in by the system), querying narra-
tive spaces (e.g. “How many stories are there where a certain
event occurs?”), and other modes of interactive exploration
and iterative refinement of narrative models.

To address these goals, we present a narrative plan-
ning engine implemented with Answer Set Programming
(ASP), and show how to layer narrative constraints and for-
mulate use-specific interactions expressed as ASP clauses.
We use the expressiveness afforded by ASP constraints to
implement notions of intention, conflict, and belief pro-
posed as key aspects of character believability by previ-
ous work (Riedl and Young 2010; Ware and Young 2011;
Wadsley and Ryan 2013; Eger and Martens 2017; Shirvani,
Farrell, and Ware 2018). We then show how global narra-
tive constraints, such as story grammars and plot structures,
can be incorporated. Finally, we present a range of modes
of interaction with the system by showing how to introduce
scenario-specific constraints and ask a wide range of ques-
tions about the encoded narrative possibility space. The par-
ticular mode of interaction determines whether the system
generates narrative, returns an answer to a specific query, or
a combination of both.

Our key claim is that the proposed model generalizes prior
narrative generation models and has the potential to enable
several new, compelling modes of interaction with a narra-
tive space. The contributions detailed in this paper to support
this claim are: 1) our ASP implementation in Clingo (Geb-
ser et al. 2008) of an intentional narrative planner, enabling
the use of expressive narrative constraints; 2) a methodol-



ogy to encode arbitrary constraints that interact with the nar-
rative possibility space, using the BRUTUS model of nar-
rative themes like betrayal (Bringsjord and Ferrucci 1999)
as a case study; and 3) example encodings of question-and-
answer interactions, demonstrating the versatility of our ap-
proach. Our long-term aspiration is to use this constraint-
based narrative generation system as the back-end for a user-
facing explorable, interactive system that will deepen user
understanding of complex rule systems.

Related Work

The idea of using theorem proving technology to carry
out narrative generation is not new. The BRUTUS sys-
tem (Bringsjord and Ferrucci 1999) positions itself in this
way: “we approach story generation through logic; in more
specific terms, this means that we conceive of story gener-
ation as theorem proving” (Bringsjord and Ferrucci 1999).
Mueller (2007) present a computational model of narrative
that combines model finding and planning; however, their
goal is story understanding rather than generation. A more
recent line of work maps story domains into propositions in
linear logic (Martens et al. 2013; 2014; Bosser et al. 2011),
which allows for logical proofs to be directly mapped to sto-
ries; however, this approach depends on a specialized logic
that is less readily adapted to meta-analysis and constraint
within a standard logic programming language.

Outisde of the narrative domain, we are motivated by
prior work in what we describe generally as systems that
enable explorable formal models. Semantic modeling tools
such as Rosette (Torlak and Bodik 2013), Alloy (Jackson
2012), PLT Redex (Klein et al. 2012), the K (Rosu and
Serbanutd 2010) semantics language, the Spoofax language
workbench (Kats and Visser 2010), Razor (Saghafi and
Dougherty 2014), and miniKanren (Byrd 2009) provide a
basis for authoring formal specifications and programs that
manipulate them, usually centered on applications to pro-
gramming language theory and design. These tools support
interactive execution and model querying with the same ver-
satility that we aim to provide for the narrative domain.

Our work is probably most closely related to the Role-
Model system (Chen et al. 2010), whose efforts to develop
a narrative generator in ASP via the Event Calculus inspire
our own approach. However, RoleModel is explicitly not a
planning-based approach, lacking mechanisms for modeling
character intentions, causality, or alternative timelines. Role-
Model also limits the constraints considered relevant to nar-
rative generation to forbidding and requiring certain roles
and actions.

An Answer Set Programming approach to
Narrative Planning

The use of planning for narrative generation has a long his-
tory (Young 1999; Porteous, Cavazza, and Charles 2010;
Riedl and Young 2010; Ware and Young 2011). In this ap-
proach, narratives are represented as causally-linked events,
each of which changes the facts that are true in the world
model. Two key attributes are considered important for the
believability of a narrative: the causal progression of plot

and character believability. To ensure believability of char-
acters with cognitive processes, they must be intentional
agents. In other words, each action a character takes should
be in service to a goal (Riedl and Young 2010). A character’s
intentions are established as part of the narrative itself, and
then drive their actions. We adopted this idea in our planner
because it lets us explain a character’s actions and generate
examples which do not seem contrived.

Our software system consists of a general-purpose narra-
tive planner supporting intention and conflict, implemented
using Answer Set Programming (ASP). ASP is a declarative
programming technique where programs are sets of logical
expressions (i.e. logic programs), specified in terms of gen-
erative rules, facts, and constraints. A constraint solver then
attempts to find stable models (answer sets) for the logic
program (Gelfond and Lifschitz 1988). As opposed to other
logic programming languages like Prolog, ASP provides
a means of expressing disjunctive clauses through choice
rules, which allow multiple possible worlds to be consistent
with a given program. Specifically, we used Clingo (Gebser
et al. 2008) as our implementation language.

Implementing a planner in ASP opens up the possibility of
using the rich constraints provided by the system for sculpt-
ing the possibility space of generated narratives. The inter-
play between generative rules and constraints, coupled with
relational programming, allows a model, once specified, to
be used in several different ways. An ASP model merely
specifies the relationships between different predicates. Ad-
ditional constraints can be applied later to use some of the
predicates as “inputs” to the program, while the solver finds
consistent values for the rest.

Preliminaries

ASP can be used to generate narrative scenarios from a pos-
sibility space of action sequences, as explored initially in the
RoleModel system by Shen et al. (Chen et al. 2010). Pos-
sibility spaces are represented through choice rules of the
form {¢}, which indicate that the formula ¢ may, but is not
required to, hold in each model. For example, the following
program expresses the possibility for a user to do any, both,
or neither of two post actions:

{happens (attack (princess, robot)); happens(
attack (robot, princess))}.

A standard answer set solver will report these results as:

Answer: 1

Answer: 2

happens (attack (robot,princess))

Answer: 3

happens (attack (princess, robot))

Answer: 4

happens (attack (robot,princess)) happens (
attack (princess, robot))

Logic variables (indicated syntactically as identifiers
starting with a capital letter) and conditions (formulas to the
right of the backwards implication symbol : -) can be used
to quantify over finite sets and generate possible clauses for




each element. For example, the following rule generates a
set of satisfying models in which happens may or may not
hold for each action specified as “possible:”

{ happens (Action) } :— possible(Action).

The resulting generative space has size 9lAction]

Event Calculus

In narratives, the state of the world changes over time. It
is common to formalize state change with predicates whose
truth depends on a temporal index; these time-varying predi-
cates are called fluents. Event calculus (Kowalski and Sergot
1989) is a particular logical theory of fluents used to repre-
sent and reason about sequences of events. The state evolves
through actions, which describe how fluents may change
from one time step to the next. They may require precon-
ditions to be satisfied before they can be executed. Actions
are assumed to be instantaneous, and occur in discrete time
steps.

A common formalization of event calculus axioms is as
follows:

holds(T + 1, F) « initiates(T, F) (D

holds(T + 1, F) < holds(T, F) A —terminates(T, F)
@)
Part (1) states that if an action at time 1" initiates (makes
true) a fluent, then the fluent holds (is true) at the next time
step. Part (2) states that fluents have inertia, i.e., they con-
tinue to be true until terminated by an action. This assumes
default negation (if predicate P cannot be derived, then =P
is assumed to hold). This representation can be readily trans-
lated into ASP.

Event calculus for partially ordered events

prepare pasta

buy groceries serve dinner

prepare dessert

Figure 1: Consistent partial order

A narrative is a sequence of causally linked events (ac-
tions). Actions naturally form a partial order because of their
prerequisites and effects. Some actions must be performed
before others, while others may be mutually independent.
For instance, in the sequence of events buy groceries — pre-
pare pasta — prepare dessert — serve dinner, we can see
that buy groceries must occur first, serve dinner must occur
last, but the other two events can occur in either order in be-
tween them. We can depict this as a diamond graph (Figure

terminates(P2)

initiates(P1)

initiates(P2)

Figure 2: An example of an ambiguous partial order. The
arrows represent the partial order relation happens before.
This relation is transitive, but we have omitted the edge be-
tween e; and ey, since it can be derived through transitivity.
We will omit such edges throughout the paper for clarity.
Nodes are labeled with the effects of each action.

1), where es and es are unordered. This is a better repre-
sentation than a linear graph, since it allows us to represent
causality and to arbitrary reorder independent events.

The standard event calculus formulation works well for
a totally ordered sequence of events, but breaks down if
we have a partial order. Consider the four events shown
as the nodes of a graph in Figure 2. Here we can be sure
that holds(eyq, P1) is true, but we cannot say anything about
holds(e4, P3). In fact, (1) and (2) would incorrectly imply
that holds(ey, P») is true.

We therefore extend the standard event calculus formula-
tion to allow for partially ordered events by introducing a
new predicate, strong_holds, which we define as follows:

strong_holdsp(e, F') <= YT € C(P) holdst(e, F)
3)
The predicate subscripts indicate the order over events in
which the predicate holds, and C(P) is the set of all total
orders consistent with the partial order P. We say that total
order (A, <7) is consistent with partial order (A, <p) iff:

Ve,ye Alx <py = x <71Y)

In other words, strong_-holds(e, F') is only true if we can
be sure that the fluent will hold regardless of how we
“linearize” the partial order. Going back to figure 2, we
can conclude that strong_holds(es, P1) is true, but not
strong_holds(eq, Ps).

This, however, creates the issue that we can no
longer rely on default negation. For instance, while
strong-holds(e4, Py) is not true, we also cannot say for
sure that the fluent P> will not hold at e4. So we introduce
another predicate, strong_-notholds, which is defined in a
similar manner:

strong-notholdsp(e, F') <= VT € C(P)-holdst(e, F)

“4)
where all other terms are as defined in (3).! Then we can
force the planner to generate sequences where the partial

'For implementation in Clingo, we need to translate this state-
ment to an equivalent formalization expressible in Clingo’s lan-
guage of Horn clauses. We omit the expanded definition for brevity.



intends(Actor, Event) initiates(Event)

O O
T, Intention Frame T,

Figure 3: The definition of an intention frame, depicted
schematically.

order matches causality by maximizing the number of un-
ordered nodes in the graph,? as shown in Listing 1.

Listing 1: Showing causal links by maximizing the number
of unordered nodes

:— intends (I1, X, A),
not satisfies(_, intention(Il, X, A)).

% Defining frame (I, N)

frame (I3, intention(Il, X, A)) :-—
satisfies(I2, intention(Il, X, A)),
after (I3, I1), before(I3, I2),
actor (I3, A).

% CONSTRAINT: All events must be part of
frames of all their actors
:— actor (I, A),

oe

not frame (I, intention(_, _, A)),
not satisfies (I, intention(_, _, A)),
Al=env.

unordered (X, Y) :-
id(x), id(y),
not after (X, Y),
not before (X, Y),
X!=Y,
concludes (C, X):
terminus (C),
concludes (C, Y).
#maximize
{1@1,unordered(X,Y) :unordered(X,Y) }.

Narrative Constraints
Intention

Character intentionality refers to the idea that each action a
character takes in the generated narrative should be in ser-
vice to a goal (Riedl and Young 2010). A character’s in-
tentions are established as part of the narrative itself, and
then drive their actions. We adopted this idea in our planner
because it lets us explain a character’s actions and generate
examples which do not seem contrived.

Figure 3 presents a schematic representation of a key part
of our logical definition of intention. An intention created at
time T} is satisfied at some later point 715 iff 75 initiates
the intended event, and there is no earlier timepoint 7" be-
tween 1) and 75 which satisfies it. We then define an in-
tention frame by saying that any timepoint between when
the intention is formed and satisfied, on which the satisfying
event is causally dependent, is within the frame. Our ASP
implementation is shown in Listing 2.

Listing 2: Definition of intention frames and intentionality
of plans.

%% Defining satisfies (I, N)
satisfies(I2, intention(Il, X, A)) :-—
intends (I1, X, A), initiates(I2, _, X),
after (12, I1),
not satisfies (I3, intention(Il, X, A))
after (I3, I1), before(I3, I2).

% CONSTRAINT: All intended fluents must hold
at some point after they’re intended

o\

2Clingo supports maximization of the cardinality of a given set
through the #maximize directive.

Underspecified Intentions In prior work on which we
base our intention model (Riedl and Young 2010), intentions
are assigned to agents either as part of effects of certain ac-
tions (e.g. someone hurting a character might motivate them
to exact revenge), or automatically as part of the initial con-
ditions of the planning problem. The domain author needs
to design actions that can cause intentions to arise. Since we
want to be able to fully explore the possibility space consis-
tent with a given policy, we would have to carefully design
intention-causing actions so that all possible outcomes were
covered, which would be a daunting task.

To solve this issue, in addition to supporting hand-
authoring of intention assignment actions, we introduce a
special agent, the mastermind, whose job is to motivate (as-
sign intentions to) other agents in order to satisfy global
planning constraints and goals. These intentions are selected
from the space of all available fluents. This lets us avoid
comprehensive hand-authoring of character intentions, mak-
ing more actions reachable while retaining the ability to ex-
plain a character’s decisions in every possible story.

Conflict

Conflict is a central concept of European-originating narra-
tive theory: a story is generally considered interesting only
if different characters (intentional agents, which may in-
clude nonhuman entities such as the environment or soci-
ety) act towards conflicting goals (Ross 1993). The CPOCL
narrative planner models conflict as a character’s plans be-
ing thwarted by another character (Ware and Young 2011).
In other words, a conflict occurs when two or more inten-
tions are mutually incompatible. We incorporate this model
into our planner, allowing us to model real-world scenar-
ios with antagonistic actors in addition to fictional scenarios
with greater narrative interest.

The CPOCL model induces a notion of alternate, or
branching, timelines, in the sense that for a plan to be
thwarted, that plan has to have been intended to take place
by the thwarted agent. A given timestep can thus have multi-
ple conclusions. We define a conclusion of a given timestep
as any terminus that occurs after it. We then define a split
in the timeline, indicating unexecuted actions, as occurring
when a child node does not have all of the conclusions of
its parent. Finally, a node where timeline splits should have
a single parent, in order to avoid scenarios where a timeline




feeds back into another timeline. This definition is shown in
Listing 3.

Listing 3: Definition of conflict creating split timelines.

terminus (C) :—= id(C), not after (X, C): 1id(X)

concludes (C, X)
:— id(X), after(C, X), terminus(C).
concludes(C, C) :— terminus(C).

split (X, Y)
:— edge (X, Y),
concludes (C, X), not concludes(C, Y)

:— split (X, i),
not { edge(P, Y): id(P) } = 1.

Plot Schema

BRUTUS (Bringsjord and Ferrucci 1999) is a narrative gen-
eration engine that encodes themes such as betrayal and gen-
erates stories that contain these themes. For example, BRU-
TUS uses a Prolog-like language to “mathematize” betrayal
as shown in Listing 4.

Listing 4: BRUTUS plot schema definition for betrayal.

betrayal (Betrayor, Betrayed) :-—
goal(Evil, EvilPlan, Betrayor),
includes (EvilPlan, BetrayorsLie),
say (BetrayorsLie),
includes (EvilPlan, Thwarting),
thwart (Thwart) ,
prevented_goal (Thwarting, BetrayedsGoal)

’
supports (BetrayorsLie, BetrayedsGoal),
goal (BetrayedsGoal, BetrayedsPlan,
Betrayed),
belief (Betrayed, BetrayorsLie).

The concept of themes of this nature, which we refer to
as plot schema, dates back to pre-digital notions of narra-
tive grammars, as in Propp’s foundational Morphology of
the Folktale (Propp 1928). Narrative grammars informed
early computational approaches to narrative formalization,
and they have an ongoing legacy in more recent work such
as plot units (Lehnert 1981; Goyal, Riloff, and III 2013) and
story intention graphs (Rishes et al. 2013). While planning-
based approaches afford much richer world models, narra-
tive grammars and plot schema remain useful as a way of
codifying global structure to plots, allowing us to identify
common plot structure between distinct story contexts (e.g.
Disney’s The Lion King as an adaptation of Shakespeare’s
Hamlet). This model is also useful if, say, we want to require
generated narratives to carry particular themes or tropes, fol-
low a particular narrative arc (pattern of rising and falling
action), or subvert genre expectations for any of the above.

We show how our planner can gracefully account for plot
schema like this by encoding the betrayal example into the
notions of intention and conflict supported by our planner
(presented here in natural language for readability):

e The Betrayed has intention /.

Carol wants to pass her PhD exam

Carol asks Bob
if he will sign
her thesis

Carol asks George
if he will sign
her thesis

if she will sign
her thesis

George lies to Carol
that he intends to
sign her thesis

Alice tells Carol
she intends to
sign her thesi

Bob tells Carol
he intends to
sign her thesis

Bob signs Carol's thesis

Alice signs Carol's thesis

George refuses

George signs Carol's thesis
to sign Carol's thesis

Carol fails her PhD exam e @ Carol passes her PhD exam

(N )
endj M

Figure 4: A betrayal narrative generated by our system.

e The Betrayer expresses intention I, but has intention /5.

e Step S,, which would satisfy the expressed intention /o,
lies inside the intention frame of the Betrayed’s intention
1.

e Step S; occurs in an alternate timeline, in which [; is also
satisfied.

e Step S3 occurs on the actual timeline and satisfies 5.

Figure 4 shows a betrayal narrative generated by our sys-
tem using this encoding, using an example domain inspired
by BRUTUS. The Betrayed (Carol) needs 3 signatures on
her thesis to pass her PhD exam (/). The Betrayer (George)
promises to sign her thesis (/5), but instead has the inten-
tion to see her fail (/3). The main timeline extends from the
start node to the end node, and satisfies the Betrayer’s in-
tention. The Betrayed’s intention is satisfied in an alternate
timeline (extending from start to node 14), and depends on
the Betrayer’s promise.

Example Interaction

Our central claim is that our ASP formulation unifies and
generalizes prior work on plan-based narrative generation,
supporting several modes of interaction through slight modi-
fications on input constraints. This section validates the final
claim by demonstrating an example domain and interaction.
Consider a domain where a dragon needs to be slayed.
There are various ways to achieve that goal, but the dragon
has a specific weakness. The goal of the user is to find that
weakness.
Our hero may ask one or more of: Ice Wizard, Air
Bender, or Fire Demon to accompany them.
They may take one or more of: Earth Stone, Fire Lantern,
or Ice Diamond with them.
They may travel through one or more of: Fire Pit, Air
Gardens, or Metal Caves.



To find the pattern, the user first asks the system to gener-
ate a few narratives where the dragon is successfully slayed.

Listing 5: Generating successful narratives

:— not strong_holds(end, dragon_slayed).

The user sees the following two narratives:
Narrative 1:

e The hero asks the Ice Wizard to accompany them
e The hero travels through the Fire Pit
e The hero acquires the Earth Stone

Narrative 2:
e The hero asks the Fire Demon to accompany them
e The hero travels through the Air Gardens
o The hero acquires the Earth Stone

The user observes two common elements: earth stone, and
fire. The user wants to check whether a successful narrative
can be generated without using either.

Listing 6: Narrowing down

:— not strong_notholds(end, acquired(
earth_stone)) .
= type (I, fire), id(I).

The system then generates the following narrative, which
means indeed, it is possible:

e The hero asks the Air Bender to accompany them
e The hero acquires the Ice diamond
o The hero travels through the Metal Caves

The user notices that the sequence always contains 3 dis-
tinct element types. At this point, the user would like to
know what an unsuccessful narrative looks like.

Listing 7: Unsuccessful narrative

:— not strong_notholds(end, dragon_slayed).

e The hero asks the Air Bender to accompany them
e The hero acquires the Ice diamond

e The hero travels through the Air Gardens

e The hero asks the Air Bender to accompany them
e The hero travels through the Metal Caves

e The hero acquires the Earth Stone

o The hero travels through the Air Gardens

At this point, it seems that the occurrence of the same ele-
ment more than once prevents the dragon from being slayed,
and we require 3 distinct elements. To confirm this, the user
inputs:

Listing 8: Unsuccessful narrative

= 2 { type(I, T): 1d(I) }, type(T).

Discussion

The entire CPOCL planner implementation is 160 lines of
ASP code, a small enough size to support independent re-
view and reuse in other systems. All code will be made avail-
able and linked in the paper upon publication.

There are some limitations of our work that need to be ad-
dressed. First, while we have a notion of causality and order-
ing of events, the narratives do not specify how this ordering
relates to time in the real world in days and hours. This can
be relevant when encoding constraints that mention specific
time intervals. One way to implement this is to introduce
a fluent days_elapsed (N), which is less than ideal, be-
cause it will need to be included in every action definition.

Second, we did not focus much on optimization, and state
space explosion can create performance issues. For narra-
tives longer than 20 steps, grounding can result in a 1GB+
file, with a memory usage of 8GB+. We will focus on opti-
mization in the next phase of our work.

Third, when generating all possible answer sets, many of
the narratives generated are very similar and differ only in
inconsequential details, like graph node identifiers. The user
can usually apply additional constraints to narrow down to
the desired narrative, but this is less than ideal.

While Clingo proved to be a good choice for representing
our system, we did face some hurdles during implementa-
tion. A lack of support for typed predicate arguments means
that typos in predicate names and arguments often go unno-
ticed, leading to hours of time wasted debugging. This issue
could be alleviated by an extension to the language allowing
explicit typing and static type checking.

Conclusion and Future Work

This work unifies several previous narrative models within a
relational programming framework that can be adapted to a
number of use cases. We presented a flexible, CPOCL-style
narrative planner written in pure ASP, showing how prior
work on intention and conflict could be represented ele-
gantly. We then demonstrated the versatility of this approach
by incorporating thematic constraints via plot schema and
showing how a rich interaction could be supported with
small changes to the input.

Our long-term vision with this project is to develop ex-
plorable formal models that users can interact with to de-
velop an understanding of complex rule systems through
play. While we have demonstrated that our system can
gracefully represent concepts in preceding narrative gener-
ation systems and support several modes of interaction, we
require development of a user interface for translating be-
tween natural language and computable ASP queries. We
currently have an interface to parse, filter, and visualize the
output of our planner, but a more usable interface will need
to be devised for users to be able to add constraints.

References

Bosser, A.-G.; Courtieu, P.; Forest, J.; and Cavazza, M.
2011. Structural analysis of narratives with the coq proof
assistant. In International Conference on Interactive Theo-
rem Proving, 55-70. Springer.



Bringsjord, S., and Ferrucci, D. 1999. Artificial intelligence
and literary creativity: Inside the mind of BRUTUS, a story-
telling machine. Psychology Press.

Bruner, J. 1991. The narrative construction of reality. Criti-
cal inquiry 18(1):1-21.

Byrd, W. E. 2009. Relational Programming in miniKan-
ren: Techniques, Applications, and Implementations. Ph.D.
Dissertation, Indiana University.

Chen, S.; Smith, A. M.; Jhala, A.; Wardrip-Fruin, N.; and
Mateas, M. 2010. Rolemodel: towards a formal model of
dramatic roles for story generation. In Proceedings of the
Intelligent Narrative Technologies III Workshop, 8. ACM.

Eger, M., and Martens, C. 2017. Character beliefs in story
generation. In Thirteenth Artificial Intelligence and Interac-
tive Digital Entertainment Conference.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Thiele, S. 2008. A user’s guide to gringo,
clasp, clingo, and iclingo.

Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070-1080.

Gerrig, R. J., and Wenzel, W. G. 2015. The role of inferences
in narrative experiences. Inferences during reading 362.

Goyal, A.; Riloff, E.; and III, H. D. 2013. A computational
model for plot units. Computational Intelligence 29(3):466—
488.

Jackson, D. 2012. Software Abstractions: logic, language,
and analysis. MIT press.

Kats, L. C., and Visser, E. 2010. The spoofax language
workbench: Rules for declarative specification of languages
and ides. In Proceedings of the ACM International Confer-
ence on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’10, 444-463. New York, NY,
USA: ACM.

Klein, C.; Clements, J.; Dimoulas, C.; Eastlund, C.;
Felleisen, M.; Flatt, M.; McCarthy, J. A.; Rafkind, J.; Tobin-
Hochstadt, S.; and Findler, R. B. 2012. Run your research:
on the effectiveness of lightweight mechanization. ACM
SIGPLAN Notices 47(1):285-296.

Kowalski, R., and Sergot, M. 1989. A logic-based calculus
of events. In Foundations of knowledge base management.
Springer. 23-55.

Lehnert, W. G. 1981. Plot units and narrative summariza-
tion. Cognitive science 5(4):293-331.

Martens, C.; Bosser, A.-G.; Ferreira, J. F.; and Cavazza, M.
2013. Linear logic programming for narrative generation. In
International Conference on Logic Programming and Non-
monotonic Reasoning, 427-432. Springer.

Martens, C.; Ferreira, J. F.; Bosser, A.-G.; and Cavazza, M.
2014. Generative story worlds as linear logic programs. In
Seventh Intelligent Narrative Technologies Workshop.

Mueller, E. T. 2007. Understanding goal-based stories
through model finding and planning. In AAAI Fall Sympo-
sium: Intelligent Narrative Technologies, 95-102.

Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Transactions on Intelligent Systems
and Technology (TIST) 1(2):1-21.

Propp, V. 1928. Morphology of the Folktale, volume 1.
University of Texas Press.

Riedl, M. O., and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research 39:217-268.

Rishes, E.; Lukin, S. M.; Elson, D. K.; and Walker, M. A.
2013. Generating different story tellings from semantic rep-
resentations of narrative. In International Conference on In-
teractive Digital Storytelling, 192-204. Springer.

Ross, E. 1. 1993. Write Now. Barnes & Noble Publishing.

Rosu, G., and Serbanuta, T. F. 2010. An overview of the K
semantic framework. Journal of Logic and Algebraic Pro-
gramming 79(6):397-434.

Saghafi, S., and Dougherty, D. J. 2014. Razor: Provenance
and exploration in model-finding. In PAAR@ 1JCAR, 76-93.
Citeseer.

Shirvani, A.; Farrell, R.; and Ware, S. G. 2018. Combin-
ing intentionality and belief: Revisiting believable character
plans. In Fourteenth Artificial Intelligence and Interactive
Digital Entertainment Conference.

Torlak, E., and Bodik, R. 2013. Growing solver-aided lan-
guages with rosette. In Proceedings of the 2013 ACM in-
ternational symposium on New ideas, new paradigms, and
reflections on programming & software, 135-152. ACM.

Wadsley, T., and Ryan, M. 2013. A belief-desire-intention
model for narrative generation. In Ninth Artificial Intelli-
gence and Interactive Digital Entertainment Conference.
Ware, S. G., and Young, R. M. 2011. Cpocl: A narrative
planner supporting conflict. In Seventh artificial intelligence
and interactive digital entertainment conference.

Young, R. M. 1999. Notes on the use of plan structures in
the creation of interactive plot. In AAAI fall symposium on
narrative intelligence, 164-167.



