
Villanelle: An Authoring Tool for Autonomous
Characters in Interactive Fiction

Chris Martens and Owais Iqbal

martens@csc.ncsu.edu omiqbal@ncsu.edu

North Carolina State University, Raleigh, NC USA
https://go.ncsu.edu/poem

Abstract. Our goal is to discover tool and language design principles
that enable powerful, usable autonomous character authorship for diverse
audiences of storytellers. This paper describes the Villanelle project, an
approach to interactive narrative authoring that supports seamless in-
tegration of autonomous characters into choice-based storytelling. We
present our computational model based on behavior trees uniformly
for scripting agent interaction, user interaction, and narrative events;
our stand-alone authoring tool, which provides an integrated develop-
ment and testing environment for authoring with this model; and our
JavaScript API for web-based development, demonstrating the expres-
siveness and simplicity of our approach through two case studies.

1 Introduction

The rise in popularity of interactive narratives has led to the introduction of
authoring tools that aim to bridge the gap between two different skill-sets re-
quired for creating an interactive narrative: narrative design (for authoring the
narrative, world and characters) and programming (for realizing the narrative
and the different mechanisms the author has in mind). Tools like Twine [10] have
gained wide user bases among underrepresented storytellers and game makers
due to their usability without programming experience [5]. These tools allow
an author to quickly write and test the narrative ideas that they have in mind
without focusing the majority of their attention on implementation details.

Meanwhile, there is active and growing interest in creating procedural play
systems that promote player interest through worlds that continue to change and
grow without player intervention, yet respond to player input [24]. One way to
achieve this effect is through autonomous NPCs (non-player characters) who act
according to their own plans and goals and create emergent interactions among
themselves. The intelligent narrative research community has made significant
advances in storytelling with autonomous NPCs, including reactive systems such
as ABL [11] underlying the landmark interactive drama Facade [12], planning-
based systems that regenerate narrative arcs based on player decisions [1, 20, 19],
and the social practice systems encoded in CiF and Versu [14, 4].

However, there is a significant gap between the potential expressiveness af-
forded by autonomous characters in interactive narrative and the availability



2 C. Martens and O. Iqbal

of authoring tools that make these techniques approachable and usable in the
same way that Twine and Inform have made hypertext and parser-based sto-
rytelling authorable. Current tools lie at different ends of the approachability-
expressiveness scale when it comes to intelligent character authoring, which is
to say that if a tool has the capability to encode a complex behavior for an
autonomous character, then it generally also has a steep learning curve.

This paper presents Villanelle, a framework and tool for authoring NPC be-
havior in interactive narrative works, which aims to bridge this gap. Villanelle
adopts behavior trees (BTs) as a computational foundation for authoring char-
acter behaviors and player interactions. Behavior trees have shown effective for
scripting AI characters and proven by wide adoption in AAA games [16] and
game creation frameworks like Unity 3D and Unreal Engine. Behavior tree pro-
ponents cite how easy they are to create, maintain, and scale, allowing designers
to quickly be able to create the behavior they want in autonomous charac-
ters without getting lost in minute implementation details. Designers can craft
reusable subtrees of behavior to be used for different characters or repeated mul-
tiple times in the same tree. Behavior trees allow authors to focus on the overall
agent behavior they want to achieve.

Villanelle uses behavior trees not only for scripting NPCs in interactive nar-
rative, but also for writing choice frames, game rules, and the outcomes of player
actions in the interactive narrative. This choice demonstrates our philosophy of
language minimalism, presenting a minimal basis of programming constructs
that, once learned, can be composed to fulfill a wide range of authoring needs.
We hypothesize that once an author grasps the basics of implementing a behav-
ior tree, they will be able to author new, experimental narrative experiences that
rely on believable and responsive virtual characters. In the long run, a success-
ful execution of this concept will offer a healthy balance of expressiveness and
approachability.

Our key contributions in this paper are as follows: (a) a reproducible de-
scription of how BTs can be used to author story characters and branching
choice structures in the context of text-based interactive fiction (Section 3); (b)
a system description of the Villanelle authoring tool (Section 4) and application
programming interface (API) (Section 5); (c) a demonstration of Villanelle’s ca-
pabilities through two case studies, one using the stand-alone authoring tool
(Section 4) and one using the underlying API (Section 5).

2 Related Work

There is an extensive body of research on authoring tools for developing inter-
active narrative, across a wide variety of goals for the resulting narrative works.
Grow et al. [6] compare three tools specifically for authoring interactive virtual
agents: Bryson et al.’s BOD/POSH [2], Dias et al.’s FAtiMA [3], and Mateas
and Stern’s ABL [11]. These authoring tools were evaluated on an example re-
ferred to as the “Lost Interpreter” scenario in which the player, as an armed
soldier in occupied territory, must show a photograph to locals in order to find



Title Suppressed Due to Excessive Length 3

their lost interpreter. However, none of these tools were evaluated in terms of
their ability to express autonomous behavior, i.e. actions taken by NPCs that
are not in direct reaction to player actions. Villanelle’s adoption of BTs targets
this mode of use in particular, and suggests the need for a wider range of case
study scenarios with which to evaluate interactive narrative technology.

A number of other tools for interactive narrative authoring have been devel-
oped and described in academic literature, such as Scribe [15], IDTension [26],
Narratoria [27], and Mimmisbrunnur [25]. These tools place varying levels of
emphasis on NPC autonomy. Among these, Versu [4], CiF [14] (and its successor
Ensemble [22]), and the Spirit AI Character Engine demoed at AIIDE 2018 [21])
are probably the closest in their goals to Villanelle; however, all of these tools
have more of a focus on imparting characters with believable emotional and so-
cial intelligence. In contrast, Villanelle is agnostic to the particular set of actions
that characters can carry out (whether they be related to mood changes, logistics
like moving between locations and manipulating items, or insulting or befriend-
ing other characters) and is more concerned with the mechanics of authoring; i.e.
on evaluating BTs as an computational model for coordinating NPC behaviors.

Behavior trees have seen widespread adoption in the mainstream gaming in-
dustry, particularly for NPC AI in real-time strategy and first-person shooter
games [8], and efforts have been made to make them easy for designers to author
through tools like BehaviorShop [7] and Unity3D’s Behavior Designer. In the IN
context more specifically, Kapadia et al. conducted an evaluation of behavior
trees for narrative authoring and user interaction [9], comparing them to a story
graph approach. This study was done using the Unity3D engine and an existing
story framework created by the authors. However, their user study found that
expert programmers still took multiple hours to develop a relatively minimal
example. Our approach to handling user interaction with BTs requires less au-
thoring overhead, and we anticipate that a similar example would take much
less time to author.

3 Villanelle’s Behavior Trees

The Villanelle project takes a “language-based” approach to authoring, which
means we distinguish between the computational model afforded to authors and
its implementation as an authoring tool, which included syntactic sugar and
integrated editing environment support. Villanelle’s computational model uses
behavior trees (BTs) to represent branching narrative structures as well as NPC
AI. We chose BTs based on their wide adoption in the games industry by design-
ers [8], who vouch for their ease of development as well as reusability for encoding
different characters with the same behavior. To minimize the learning curve, Vil-
lanelle chooses to implement only the minimal basic constructs of behavior trees:
sequencing, selection, conditions, and actions. The implementation is also done
in a functional programming manner, using the formalism described in previous
work (citation omitted for blind review). We recapitulate this formalism in this
section.



4 C. Martens and O. Iqbal

Fig. 1. A diagram of the game loop architecture in Villanelle. Yellow nodes are authored
constructs, and blue nodes are run-time artifacts. The two edges labeled 0 represent
configuring the initial story world for the player using the authored user interaction
tree and initial state. Edge 1 indicates the player making a choice. Edge 2 propagates
this choice to the user interaction tree, which updates the world through edge 3. Edge 4
represents BTs for each agent collectively taking their “turns” and modifying the world
state. Finally, the to edges labeled 5 indicate rendering the updated world state to the
player, potentially offering different choices based on conditions in the user interaction
tree.

Villanelle was designed for interactive fiction, which traditionally works in a
turn-based manner. Therefore, the actions and subsequent changes to the state of
the world occur over discrete time steps. Upon selection of an action to perform
by the player, Villanelle executes the behavior tree mapped to that action as
well as the next step of each behavior for each agent in the game (see Figure 1).

Villanelle uses behavior trees (BTs) as its underlying computational model.
We next describe the specific BT constructs that make up this computational
model using the example in Figure 2. The types of nodes that Villanelle uses are
primitive actions, which appear at the leaves of the tree, sequence and selector
nodes consisting of two or more children, and guards, which have a single child
node. Every node type is implemented as a function that returns a Status of
SUCCESS, FAILURE or a RUNNING upon execution, which sometimes depends on
the status returned by its children.

3.1 Primitive Actions

Action nodes are responsible for mutating the world state. Actions need to spec-
ify their preconditions and effects. A precondition is a function that will inspect
certain variables in the world state and return a boolean value. If it is true, the
effects parameter gets executed and if it is false, the Tick returns a status of
FAILURE. Effects are responsible for all observable changes, including printing
text that the player will see or changing variables that other agents may react
to.



Title Suppressed Due to Excessive Length 5

Fig. 2. An example behavior tree for an agent. Composite nodes are color-coded orange
and shaped as plus signs or arrows, condition guards are colored blue and diamond-
shaped, and primitive actions are purple rectangles.

As an example, the following code specifies an action node with a precondi-
tion that checks whether a door is unlocked, and if it is, opens the door. This
code implements the condition and action seen in the middle-right of Figure 2.

condition: not doorLocked

effects: doorOpen := true

3.2 Composite and Guard Nodes

A ‘Composite’ is any node with two or more children. The two types of compos-
ites currently implemented in Villanelle are sequences and selectors. A sequence
node executes its children sequentially until one of them returns a FAILURE.
This node returns a SUCCESS on successful execution of all children. If a child
node is in the RUNNING status, this node will return a RUNNING status as
well. A selector node is the inverse of the sequence: it executes children sequen-
tially until one of them returns a SUCCESS and hence the name (it ’selects’
a successful node from its children). The node fails if it doesn’t find a single
successful node. The case for when a child returns RUNNING is the same as for
the sequence node.

Finally, Villanelle also provides a Guard node, which allows the author to
couple a composite node with a precondition. If the precondition fails, this node
would fail else it would return whichever status the Composite node returns.

The following example represents a subtree of Figure 2 and uses conditions,
sequences, and selectors in combination.

selector:

condition: humanSaid "hello"

sequence:



6 C. Martens and O. Iqbal

- print "’HEL-LO,’ says the robot."

- atDoor := false

condition: not atDoor and not throughDoor

- atDoor := true

3.3 Agents

An agent is a structural entity that consists of a behavior tree and variables
specific to the agent. Variables are still written to the blackboard, but they are
scoped to the agent. Agents provide an easy to understand way to label behavior
trees, as the typical use case would be to attach a different behavior tree for each
major character in the narrative. It is not limited to only characters though, as
the author could also provide a behavior tree for major narrative events in the
game with a ”Director” agent.

3.4 Player Interaction with the Agents and the World

Villanelle supports the use of BTs for specifying player interactions predicated
on the state of the world. The author does this by defining user interaction trees
that the framework runs after all the agent trees have run. See Figure 3 for an
example. There are two authorable components of player interaction: what the
player sees, and the set of choices available to the player (coupled with their
effects). What the player sees may contain a description of the current scene and
the current state of some of the game’s variables. Player choices consist of a list
of actions the player can perform given the current state, as well as the effects
of each choice and the text description of the action having been carried out.

4 Standalone Authoring Tool

In prior work on usable authoring tools [15], researchers advocate for “one cen-
tralized tool in which [all] authoring functions take place.” Accordingly, we de-
veloped a standalone cross-platform desktop tool for writing and debugging in-
teractive narrative works. This tool includes live visualization of all behavior
trees created by the author and live rendering of the game. Our goal is to allow
authors to quickly prototype their ideas with the built-in editor and play the
game immediately after making their changes without requiring additional steps.
With live visualization of the trees, the authors can graphically understand the
structures that they are building and use the live error reporting to help fix
syntax and semantic issues instantly. If compilation succeeds, the author can
play their game in the tool and see the statuses of the different nodes of the
behavior trees as the game progresses. We implemented the tool using the Elec-
tron framework for creating a cross-platform desktop application, the JavaScript
React framework to handle rendering the application, and Palantir’s Blueprintjs
for the user interface.



Title Suppressed Due to Excessive Length 7

User Interaction:

- condition: botAtDoor

sequence:

- description: "There is a little robot here."

- user action:

action text: "Say hello"

effect tree:

effects:

- sayHello := true

- user action:

action text: "Wait"

effect tree:

effects:

- none := true

Fig. 3. This example presents the user with two possible choices, “Say hello” and
“Wait”, where the former is only active when the Robot agent is at the door. The
effects of saying hello set a variable that the Robot can respond to in its next turn.

Fig. 4. A screenshot of the Editor tab.

Fig. 5. A screenshot of the Play tab corresponding to the code in Figure 4.



8 C. Martens and O. Iqbal

4.1 Case Study: Weird City Interloper (Port)

Every new feature in the standalone tool was tested by developing a playable
experience that uses it. We have created and tested several playable experiences
with the tool, two of which we highlight here to demonstrate practicality and
breadth. We will explain the features of the editor using a case study based
on Weird City Interloper, a text adventure game by C.E.J. Pacian released in
2014. On the Interactive Fiction Database, it has 32 ratings, averaging 4.5 star
reviews [18]. We chose to port this game to Villanelle to evaluate its usability
for developing a choice-based exploratory game centering around conversation
with NPCs. Each NPC’s dialogue interface is controlled by a separate behavior
tree; see Figure 6 for an example.

The Villanelle editor has two tabs, Script and Play (see Figures 4 and 5
for screenshots). On every change to the Script input, the game is rendered
immediately in the Play tab. If there are any errors in the input, the compilation
fails and an error message is displayed instead. The rendered game has two
components: the text display and the player choices. The text display consists
of the title of the game and scene, the scene description as given by the user
interaction tree, and the effect text provided for any agent actions that run,
if any. In the choice input pane, we render each choice authored in the user
interaction tree as a button that will execute the associated behavior tree when
clicked.

4.2 Editing Support

The script tab primarily consists of the editor, seen in Figure 4. The editor
was realized using an open source embeddable code editor called Ace Editor. We
used the built-in language mode for YAML, the syntax upon which we developed
the Villanelle surface syntax. The Ace Editor also provides general features like
a powerful search/replace functionality (which has regular expression support),
highlighting other same tokens when one is highlighted and line numbers.

In a side panel next to the editor, a tree is rendered live with every change
the user makes to the YAML in the editor. This tree is also responsible for
highlighting the errors in the code structure if there are any. Every individual
node which has children is expandable and collapsible. The following is how the
different components are shown graphically (see Figure 6).

4.3 Debugging Support

We use json-schema and ajv libraries to perform error checks. We also run the
condition and assignment expressions against the ANTLR4 grammar. Any errors
in these checks are reported in a bottom bar with a dot indicating failure. If the
error checks succeed, the bar turns green and includes a checkmark. Every change
to the YAML input in the editor causes the error checks to be run again.

If the input is an invalid YAML schema, i.e. it violates any of the general
YAML rules, the tree isn’t rendered and a message is shown.



Title Suppressed Due to Excessive Length 9

Fig. 6. The behavior tree of an agent NPC, visualized.

Tree Visualization Behavior trees for agent nodes are rendered under each
agent. The visual structure of the behavior trees matches node for node the
structure in the YAML input. However, the conditions in actions, sequence or
selectors are represented as individual nodes themselves, with the associated
behavior tree node rendered as a child. This was done to visually create a sense
of ’gate-keeping’ the conditions provide in terms of their coupling with nodes of
a behavior tree.

The number of ticks an action node takes is displayed as a clock symbol on
the right hand side of the corresponding condition node (if the action has no
explicit condition node, a ’true’ condition node is rendered).

Nodes which have errors with types or with the Villanelle YAML schema are
reported as red nodes and their children are not rendered. The error message is
displayed on hovering over the erroneous node.

Fig. 7. The condition expression is syntactically incorrect



10 C. Martens and O. Iqbal

All ancestors of the erroneous node are automatically expanded so the author
does not have to search on their own.

Tree Execution Visualization We support debugging by rendering the live
execution of behavior trees during gameplay. As the author plays through the
game, the tree nodes are highlighted based on how they were processed: green
means SUCCESS, red means FAILURE, and orange means RUNNING. Every
time the user takes an action, the statuses of the nodes change and the tree is
refreshed showing the changes, giving the author live feedback.

Fig. 8. The different statuses for the nodes show up as you play the game

5 Application Programming Interface

To support development of web-based interactive narrative experiences, we re-
leased an open-source web application programming interface (API) for Vil-
lanelle. This API gives authors the ability to create BTs, register initial world
states, and execute the world engine, by calling JavaScript functions. The main
game loop is called worldTick(), whose code is shown in Figure 9.

While the stand-alone editor provides minimal language features, such as
variables that can hold strings, numbers, and boolean values, the API is more
flexible and intended for advanced users. It supports modularity, behaviors that
take parameters (as in [23]), and arbitrary data structures supported by Type-
Script (e.g. arrays and dictionaries).

5.1 Case Study: Rime Royale (Original Game)

We showcase the expressiveness of Villanelle’s API through Rime Royale, an
original, browser-playable game developed by our lab. Rime Royale implements



Title Suppressed Due to Excessive Length 11

export function worldTick() {

// Execute each agent’s behavior tree

for (var i = 0; i < agents.length; i++) {

var tree = agentTrees[agents[i]];

if (!isUndefined(tree)) {

setVariable("executingAgent", agents[i]);

execute(tree);

}

}

// Execute the user interaction tree

runUserInteractionTrees();

}

Fig. 9. Code for a function provided by the API to execute all behavior trees defined
by the author for agents and user interaction.

Fig. 10. A Screenshot of Rime Royale



12 C. Martens and O. Iqbal

a guildmaster roleplaying mechanic in which the player must assign NPCs with
various strengths to missions that can succeed or fail; see a screenshot in Fig-
ure 10). Villanelle is used to implement the behavior of NPCs not assigned to
missions, which act autonomously according to their personalities and prefer-
ences while other characters attempt the missions. Rime Royale was accepted
for presentation in the AIIDE 2019 Playable Experience track (citation omitted
for anonymous review), which shows evidence of the strength of its gameplay.

Rime Royale was developed over the course of one Spring semester by two
undergraduate students, one responsible for art and narrative direction and one
responsible for AI and gameplay programming. Their success provides evidence
of Villanelle’s support for innovative forms of gameplay.

6 Conclusion and Future Work

In this paper we presented Villanelle, an API framework and a standalone tool
to use behavior trees not only to author character behaviors but every other
part of an interactive narrative experience as well. Although we have not yet
conducted a formal user evaluation, we have found through internal testing that
Villanelle enables painless development of a wide range of reusable behaviors for
autonomous characters. In future work, we would like to investigate scalability to
large groups of NPCs in a social simulation akin to Prom Week [13] and formally
compare Villanelle to other authoring tools using benchmarks in previous tool
evaluations [9, 6].

Initial feedback from are target developer audience suggests that a number
of additional features would be useful, some of which (like behavior parameteri-
zation and composite data structures) exist in the API but not the standalone
tool. Other more foundational features include an extension to the behavior tree
language that supports a stronger notion of reactivity through continuously mon-
itored nodes (as in Unity’s Behavior Designer implementation). We also plan to
investigate the feasibility and utility of behavior generation through planning:
BTs lend themselves very well to Hierarchical Task Network planning [17]. We
could use this technique to automatically compose trees using from the avail-
able trees created by the author. Finally, in accordance with the evidence that
debugging and reasoning are key usability principles, we plan to investigate rea-
soning principles for multi-agent systems authored with behavior trees. This
includes debugging support for stepping, jumping, and rewinding (to analyze
unexpected NPC interactions) as well as behavior model checking to validate
(un)reachability of story states.

References

1. Aylett, R.: Narrative in Virtual Environments - Towards Emergent Narrative. In:
Working Notes of the Narrative Intelligence Symposium (1999)

2. Bryson, J.J., Stein, L.A.: Modularity and design in reactive intelligence. In: In-
ternational Joint Conference on Artificial Intelligence. vol. 17, pp. 1115–1120.
LAWRENCE ERLBAUM ASSOCIATES LTD (2001)



Title Suppressed Due to Excessive Length 13

3. Dias, J., Mascarenhas, S., Paiva, A.: Fatima modular: Towards an agent architec-
ture with a generic appraisal framework. In: Emotion modeling, pp. 44–56. Springer
(2014)

4. Evans, R., Short, E.: Versu: a simulationist storytelling system. IEEE Transactions
on Computational Intelligence and AI in Games 6(2), 113–130 (2014)

5. Friedhoff, J.: Untangling twine: A platform study. In: DiGRA conference (2013)
6. Grow, A., Gaudl, S.E., Gomes, P., Mateas, M., Wardrip-Fruin, N.: A methodology

for requirements analysis of AI architecture authoring tools. In: Foundations of
Digital Games (2014)

7. Heckel, F.W.P., Youngblood, G.M., Hale, D.H.: Behaviorshop: An intuitive inter-
face for interactive character design. In: AIIDE (2009)

8. Isla, D.: Handling complexity in halo 2 ai. http://www.gamasutra.com/view/
feature/130663/gdc 2005 proceeding handling .php (2005)

9. Kapadia, M., Zünd, F., Falk, J., Marti, M., Sumner, R.W., Gross, M.: Evaluating
the authoring complexity of interactive narratives with interactive behaviour trees.
Foundations of Digital Games (2015)

10. Klimas, C.: Twine. twinery.org (2009)
11. Mateas, M., Stern, A.: A behavior language for story-based believable agents. IEEE

Intelligent Systems 17(4), 39–47 (2002)
12. Mateas, M., Stern, A.: Façade: An experiment in building a fully-realized interac-

tive drama. In: Game developers conference. vol. 2, pp. 4–8 (2003)
13. McCoy, J., Treanor, M., Samuel, B., Reed, A.A., Wardrip-Fruin, N., Mateas, M.:

Prom week. In: Proceedings of the International Conference on the Foundations of
Digital Games. pp. 235–237. ACM (2012)

14. McCoy, J., Treanor, M., Samuel, B., Tearse, B., Mateas, M., Wardrip-Fruin, N.:
Authoring game-based interactive narrative using social games and comme il faut.
In: Proceedings of the 4th International Conference & Festival of the Electronic
Literature Organization: Archive & Innovate. pp. 1–8. Citeseer (2010)

15. Medler, B., Magerko, B.: Scribe: A tool for authoring event driven interactive
drama. In: International Conference on Technologies for Interactive Digital Story-
telling and Entertainment. pp. 139–150. Springer (2006)

16. Millington, I., Funge, J.: Artificial intelligence for games. CRC Press (2009)
17. Neufeld, X., Mostaghim, S., Brand, S.: A hybrid approach to planning and exe-

cution in dynamic environments through hierarchical task networks and behavior
trees. In: Fourteenth Artificial Intelligence and Interactive Digital Entertainment
Conference (2018)

18. Pacian, C.: Weird city interloper. The Interactive Fiction Database (https://ifdb.
tads.org/viewgame?id=wrt29d4nlm71udll) (2014)

19. Porteous, J., Cavazza, M., Charles, F.: Applying planning to interactive story-
telling: Narrative control using state constraints. ACM Transactions on Intelligent
Systems and Technology (TIST) 1(2), 10 (2010)

20. Riedl, M.O., Young, R.M.: Narrative planning: Balancing plot and character. Jour-
nal of Artificial Intelligence Research 39, 217–268 (2010)

21. Samuel, B., Reed, A., Short, E., Heck, S., Robison, B., Wright, L., Soule, T.,
Treanor, M., McCoy, J., Sullivan, A., et al.: Playable experiences at aiide 2018. In:
Fourteenth Artificial Intelligence and Interactive Digital Entertainment Conference
(2018)

22. Samuel, B., Reed, A.A., Maddaloni, P., Mateas, M., Wardrip-Fruin, N.: The en-
semble engine: Next-generation social physics. In: Proceedings of the Tenth Inter-
national Conference on the Foundations of Digital Games (FDG 2015). pp. 22–25
(2015)



14 C. Martens and O. Iqbal

23. Shoulson, A., Garcia, F.M., Jones, M., Mead, R., Badler, N.I.: Parameterizing
behavior trees. In: International Conference on Motion in Games. pp. 144–155.
Springer (2011)

24. Smith, A.: Living worlds: the joy of NPC schedules. Rock Paper Shotgun (2016)
25. Stefnisson, I.S., Thue, D.: Mimisbrunnur: Ai-assisted authoring for interactive sto-

rytelling. In: Fourteenth Artificial Intelligence and Interactive Digital Entertain-
ment Conference (2018)

26. Szilas, N., Marty, O., Réty, J.H.: Authoring highly generative interactive drama.
In: International Conference on Virtual Storytelling. pp. 37–46. Springer (2003)

27. Van Velsen, M.: Narratoria, an authoring suite for digital interactive narrative. In:
FLAIRS Conference. pp. 394–395 (2008)


